We study the problem of wave breaking for a simple wave propagating to a quiescent medium in the framework of the defocusing complex modified KdV (cmKdV) equation. It is assumed that a cubic root singularity is formed at the wave-breaking point. The dispersive regularization of wave breaking leads to the generation of a dispersive shock wave (DSW). We describe the DSW as a modulated periodic wave in the framework of the Gurevich–Pitaevskii approach based on the Whitham modulation theory. The generalized hodograph method is used to solve the Whitham equations, and the boundaries of the DSW are found. Most importantly, we determine the correct phase shift for the DSW from the generalized phase relationships and the modified Gurevich–Pitaevskii matching conditions, so that a complete description of the DSW is obtained rather than just its envelope. All of our analytical predictions agree well with the numerical simulations.

1.
G.
Biondini
,
G. A.
El
,
M. A.
Hoefer
, and
P. D.
Miller
, “
Dispersive hydrodynamics: Preface
,”
Physica D
333
,
1
(
2016
).
2.
M. A.
Hoefer
and
M. J.
Ablowitz
, “
Dispersive shock waves
,”
Scholarpedia
4
,
5562
(
2009
).
3.
G. A.
El
and
M. A.
Hoefer
, “
Dispersive shock waves and modulation theory
,”
Physica D
333
,
11
(
2016
).
4.
J. L.
Hammack
and
H.
Segur
, “
The Korteweg–de Vries equation and water waves. Part 2. Comparison with experiments
,”
J. Fluid Mech.
65
,
289
(
1974
).
5.
N. F.
Smyth
and
P. E.
Holloway
, “
Hydraulic jump and undular bore formation on a shelf break
,”
J. Phys. Oceanogr.
18
,
947
(
1988
).
6.
H.
Chanson
, “
Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results
,”
Eur. J. Mech. B Fluids
28
,
191
(
2009
).
7.
S.
Trillo
,
M.
Klein
,
G. F.
Clauss
, and
M.
Onorato
, “
Observation of dispersive shock waves developing from initial depressions in shallow water
,”
Physica D
333
,
276
(
2016
).
8.
R. H.
Clarke
,
R. K.
Smith
, and
D. G.
Reid
, “
The morning glory of the gulf of carpentaria: An atmospheric undular bore
,”
Mon. Weather Rev.
109
,
1726
(
1981
).
9.
T. A.
Coleman
,
K. R.
Knupp
, and
D.
Herzmann
, “
The spectacular undular bore in Iowa on 2 October 2007
,”
Mon. Weather Rev.
137
,
495
(
2009
).
10.
R. J.
Taylor
,
D. R.
Baker
, and
H.
Ikezi
, “
Observation of collisionless electrostatic shocks
,”
Phys. Rev. Lett.
24
,
206
(
1970
).
11.
L.
Romagnani
,
S. V.
Bulanov
,
M.
Borghesi
,
P.
Audebert
,
J. C.
Gauthier
,
K.
Löwenbrück
,
A. J.
Mackinnon
,
P.
Patel
,
G.
Pretzler
,
T.
Toncian
, and
O.
Willi
, “
Observation of collisionless shocks in laser-plasma experiments
,”
Phys. Rev. Lett.
101
,
025004
(
2008
).
12.
J. E.
Rothenberg
and
D.
Grischkowsky
, “
Observation of the formation of an optical intensity shock and wave breaking in the nonlinear propagation of pulses in optical fibers
,”
Phys. Rev. Lett.
62
,
531
(
1989
).
13.
W.
Wan
,
S.
Jia
, and
J. W.
Fleischer
, “
Dispersive superfluid-like shock waves in nonlinear optics
,”
Nat. Phys.
3
,
46
(
2007
).
14.
J.
Fatome
,
C.
Finot
,
G.
Millot
,
A.
Armaroli
, and
S.
Trillo
, “
Observation of optical undular bores in multiple four-wave mixing
,”
Phys. Rev. X
4
,
021022
(
2014
).
15.
G.
Xu
,
M.
Conforti
,
A.
Kudlinski
,
A.
Mussot
, and
S.
Trillo
, “
Dispersive dam-break flow of a photon fluid
,”
Phys. Rev. Lett.
118
,
254101
(
2017
).
16.
A.
Bendahmane
,
G.
Xu
,
M.
Conforti
,
A.
Kudlinski
,
A.
Mussot
, and
S.
Trillo
, “
The piston Riemann problem in a photon superfluid
,”
Nat. Commun.
13
,
3137
(
2022
).
17.
Z.
Dutton
,
M.
Budde
,
C.
Slowe
, and
L. V.
Hau
, “
Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose–Einstein condensate
,”
Science
293
,
663
(
2001
).
18.
M. A.
Hoefer
,
M. J.
Ablowitz
,
I.
Coddington
,
E. A.
Cornell
,
P.
Engels
, and
V.
Schweikhard
, “
Dispersive and classical shock waves in Bose–Einstein condensates and gas dynamics
,”
Phys. Rev. A
74
,
023623
(
2006
).
19.
J. J.
Chang
,
P.
Engels
, and
M. A.
Hoefer
, “
Formation of dispersive shock waves by merging and splitting Bose–Einstein condensates
,”
Phys. Rev. Lett.
101
,
170404
(
2008
).
20.
R.
Meppelink
,
S. B.
Koller
,
J. M.
Vogels
,
P.
van der Straten
,
E. D.
van Ooijen
,
N. R.
Heckenberg
,
H.
Rubinsztein-Dunlop
,
S. A.
Haine
, and
M. J.
Davis
, “
Observation of shock waves in a large Bose–Einstein condensate
,”
Phys. Rev. A
80
,
043606
(
2009
).
21.
R. Z.
Sagdeev
, “
Cooperative phenomena and shock waves in collisionless plasmas
,”
Rev. Plasma Phys.
4
,
23
(
1966
).
22.
G. A.
El
,
R. H. J.
Grimshaw
, and
A. M.
Kamchatnov
, “
Wave breaking and the generation of undular bores in an integrable shallow water system
,”
Stud. Appl. Math.
114
,
395
(
2005
).
23.
G. A.
El
,
R. H. J.
Grimshaw
, and
A. M.
Kamchatnov
, “
Analytic model for a weakly dissipative shallow-water undular bore
,”
Chaos
15
,
037102
(
2005
).
24.
A. M.
Kamchatnov
, “Wavebreaking in hydrodynamics of the defocusing NLS equation,” in Nonlinearity and Disorder: Theory and Applications, edited by F. Abdullaev, O. Bang, and M. P. Sørensen (Springer Netherlands, Dordrecht, 2001), pp. 255–261.
25.
A. V.
Gurevich
and
L. P.
Pitaevskii
, “
Nonstationary structure of a collisionless shock wave
,”
Zh. Eksp. Teor. Fiz.
65
,
590
(
1973
).
26.
G. B.
Whitham
, “
Non-linear dispersive waves
,”
Proc. R. Soc. London A
283
,
238
(
1965
).
27.
G. B.
Whitham
,
Linear and Nonlinear Waves
(
Wiley
,
New York
,
1974
).
28.
A. M.
Kamchatnov
, “
Gurevich–Pitaevskii problem and its development
,”
Phys. Usp.
64
,
48
(
2021
).
29.
Y.
Kodama
,
V. U.
Pierce
, and
F.-R.
Tian
, “
On the Whitham equations for the defocusing complex modified KdV equation
,”
SIAM J. Math. Anal.
40
,
1750
(
2009
).
30.
R. F.
Rodríguez
,
J. A.
Reyes
,
A.
Espinosa-Cerón
,
J.
Fujioka
, and
B. A.
Malomed
, “
Standard and embedded solitons in nematic optical fibers
,”
Phys. Rev. E
68
,
036606
(
2003
).
31.
H.
Leblond
,
H.
Triki
,
F.
Sanchez
, and
D.
Mihalache
, “
Circularly polarized few-optical-cycle solitons in Kerr media: A complex modified Korteweg–de Vries model
,”
Opt. Commun.
285
,
356
(
2012
).
32.
W.
Liu
,
Y.
Zhang
, and
J.
He
, “
Dynamics of the smooth positons of the complex modified KdV equation
,”
Waves Random Complex Media
28
,
203
(
2017
).
33.
L.-Q.
Kong
,
L.
Wang
,
D.-S.
Wang
,
C.-Q.
Dai
,
X.-Y.
Wen
, and
L.
Xu
, “
Evolution of initial discontinuity for the defocusing complex modified KdV equation
,”
Nonlinear Dyn.
98
,
691
(
2019
).
34.
D.-S.
Wang
,
L.
Xu
, and
Z.
Xuan
, “
The complete classification of solutions to the Riemann problem of the defocusing complex modified KdV equation
,”
J. Nonlinear Sci.
32
,
3
(
2022
).
35.
A. M.
Kamchatnov
, “
Wave breaking in dispersive fluid dynamics of the Bose–Einstein condensate
,”
J. Exp. Theor. Phys.
127
,
903
(
2018
).
36.
G. M.
Muslu
and
H. A.
Erbay
, “
A split-step Fourier method for the complex modified Korteweg–de Vries equation
,”
Comput. Math. Appl.
45
,
503
(
2003
).
37.
G. M.
Muslu
and
H. A.
Erbay
, “
Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation
,”
Math. Comput. Simul.
67
,
581
(
2005
).
38.
W.-X.
Qiu
,
K.-L.
Geng
,
B.-W.
Zhu
,
W.
Liu
,
J.-T.
Li
, and
C.-Q.
Dai
, “
Data-driven forward-inverse problems of the 2-coupled mixed derivative nonlinear Schrödinger equation using deep learning
,”
Nonlinear Dyn.
112
,
10215
(
2024
).
39.
W.-X.
Qiu
,
Z.-Z.
Si
,
D.-S.
Mou
,
C.-Q.
Dai
,
J.-T.
Li
, and
W.
Liu
, “
Data-driven vector degenerate and nondegenerate solitons of coupled nonlocal nonlinear Schrödinger equation via improved PINN algorithm
,”
Nonlinear Dyn.
(published online 2024).
40.
A. M.
Kamchatnov
, “
New approach to periodic solutions of integrable equations and nonlinear theory of modulational instability
,”
Phys. Rep.
286
,
199
(
1997
).
41.
A. M.
Kamchatnov
,
Nonlinear Periodic Waves and Their Modulations: An Introductory Course
(
World Scientific
,
Singapore
,
2000
).
42.
S. P.
Tsarev
, “
On Poisson brackets and one-dimensional systems of hydrodynamic type
,”
Sov. Math. Dokl.
31
,
488
(
1985
).
43.
A. M.
Kamchatnov
, “
Dispersive shock wave theory for nonintegrable equations
,”
Phys. Rev. E
99
,
012203
(
2019
).
44.
T.
Grava
and
C.
Klein
, “
A numerical study of the small dispersion limit of the Korteweg–de Vries equation and asymptotic solutions
,”
Physica D
241
,
2246
(
2012
).
45.
F.-R.
Tian
and
J.
Ye
, “
On the Whitham equations for the semiclassical limit of the defocusing nonlinear Schrödinger equation
,”
Comm. Pure Appl. Math.
52
,
655
(
1999
).
You do not currently have access to this content.