We propose a machine-learning approach to construct reduced-order models (ROMs) to predict the long-term out-of-sample dynamics of brain activity (and in general, high-dimensional time series), focusing mainly on task-dependent high-dimensional fMRI time series. Our approach is a three stage one. First, we exploit manifold learning and, in particular, diffusion maps (DMs) to discover a set of variables that parametrize the latent space on which the emergent high-dimensional fMRI time series evolve. Then, we construct ROMs on the embedded manifold via two techniques: Feedforward Neural Networks (FNNs) and the Koopman operator. Finally, for predicting the out-of-sample long-term dynamics of brain activity in the ambient fMRI space, we solve the pre-image problem, i.e., the construction of a map from the low-dimensional manifold to the original high-dimensional (ambient) space by coupling DMs with Geometric Harmonics (GH) when using FNNs and the Koopman modes per se. For our illustrations, we have assessed the performance of the two proposed schemes using two benchmark fMRI time series: (i) a simplistic five-dimensional model of stochastic discrete-time equations used just for a “transparent” illustration of the approach, thus knowing a priori what one expects to get, and (ii) a real fMRI dataset with recordings during a visuomotor task. We show that the proposed Koopman operator approach provides, for any practical purposes, equivalent results to the FNN-GH approach, thus bypassing the need to train a non-linear map and to use GH to extrapolate predictions in the ambient space; one can use instead the low-frequency truncation of the DMs function space of L 2-integrable functions to predict the entire list of coordinate functions in the ambient space and to solve the pre-image problem.

1.
E.
Bullmore
and
O.
Sporns
, “
Complex brain networks: Graph theoretical analysis of structural and functional systems
,”
Nat. Rev. Neurosci.
10
,
186
198
(
2009
).
2.
B.
Ermentrout
and
D. H.
Terman
,
Mathematical Foundations of Neuroscience
(
Springer
,
New York
,
2010
), Vol. 35.
3.
L. A.
Jorgenson
,
W. T.
Newsome
,
D. J.
Anderson
,
C. I.
Bargmann
,
E. N.
Brown
,
K.
Deisseroth
,
J. P.
Donoghue
,
K. L.
Hudson
,
G. S.
Ling
,
P. R.
MacLeish
et al., “
The brain initiative: Developing technology to catalyse neuroscience discovery
,”
Philos. Trans. R. Soc. B: Biol. Sci.
370
,
20140164
(
2015
).
4.
C.
Siettos
and
J.
Starke
, “
Multiscale modeling of brain dynamics: From single neurons and networks to mathematical tools
,”
Wiley Interdiscip. Rev.: Syst. Biol. Med.
8
,
438
458
(
2016
).
5.
M.
Breakspear
, “
Dynamic models of large-scale brain activity
,”
Nat. Neurosci.
20
,
340
352
(
2017
).
6.
V.
Sip
,
M.
Hashemi
,
T.
Dickscheid
,
K.
Amunts
,
S.
Petkoski
, and
V.
Jirsa
, “
Characterization of regional differences in resting-state fMRI with a data-driven network model of brain dynamics
,”
Sci. Adv.
9
,
eabq7547
(
2023
).
7.
E. M.
Izhikevich
,
Dynamical Systems in Neuroscience
(
MIT Press
,
2007
).
8.
G.
Deco
,
V. K.
Jirsa
,
P. A.
Robinson
,
M.
Breakspear
, and
K.
Friston
, “
The dynamic brain: From spiking neurons to neural masses and cortical fields
,”
PLoS Comput. Biol.
4
,
e1000092
(
2008
).
9.
E.
Bullmore
and
O.
Sporns
, “
The economy of brain network organization
,”
Nat. Rev. Neurosci.
13
,
336
349
(
2012
).
10.
D.
Papo
,
J. M.
Buldú
,
S.
Boccaletti
, and
E. T.
Bullmore
, “Complex network theory and the brain,”
Philos. Trans. R. Soc., B
369
,
20130520
(
2014
).
11.
A. L.
Hodgkin
and
A. F.
Huxley
, “
Propagation of electrical signals along giant nerve fibres
,”
Proc. R. Soc. London, Ser. B: Biol. Sci.
140
,
177
183
(
1952
).
12.
M.
Nelson
and
J.
Rinzel
, “The Hodgkin–Huxley model,” in The Book of Genesis (Springer, New York, 1998), pp. 29–49.
13.
D. A.
McCormick
,
Y.
Shu
, and
Y.
Yu
, “
Hodgkin and Huxley model—Still standing?
,”
Nature
445
,
E1
E2
(
2007
).
14.
K.
Spiliotis
,
J.
Starke
,
D.
Franz
,
A.
Richter
, and
R.
Köhling
, “
Deep brain stimulation for movement disorder treatment: Exploring frequency-dependent efficacy in a computational network model
,”
Biol. Cybern.
116
,
93
116
(
2022
).
15.
R.
FitzHugh
, “
Mathematical models of threshold phenomena in the nerve membrane
,”
Bull. Math. Biophys.
17
,
257
278
(
1955
).
16.
J.
Nagumo
,
S.
Arimoto
, and
S.
Yoshizawa
, “
An active pulse transmission line simulating nerve axon
,”
Proc. IRE
50
,
2061
2070
(
1962
).
17.
N.
Kopell
and
G.
Ermentrout
, “
Symmetry and phaselocking in chains of weakly coupled oscillators
,”
Commun. Pure Appl. Math.
39
,
623
660
(
1986
).
18.
C. R.
Laing
, “
Phase oscillator network models of brain dynamics
,” in
Computational Models of Brain and Behavior
, edited by A. A. Moustafa (John Wiley & Sons, 2017), Chap. 37.
19.
P. S.
Skardal
and
A.
Arenas
, “
Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching
,”
Commun. Phys.
3
,
218
(
2020
).
20.
M.
Segneri
,
H.
Bi
,
S.
Olmi
, and
A.
Torcini
, “
Theta-nested gamma oscillations in next generation neural mass models
,”
Front. Comput. Neurosci.
14
,
47
(
2020
).
21.
H.
Taher
,
A.
Torcini
, and
S.
Olmi
, “
Exact neural mass model for synaptic-based working memory
,”
PLoS Comput. Biol.
16
,
e1008533
(
2020
).
22.
R. B.
Buxton
,
E. C.
Wong
, and
L. R.
Frank
, “
Dynamics of blood flow and oxygenation changes during brain activation: The balloon model
,”
Magn. Reson. Med.
39
,
855
864
(
1998
).
23.
W. D.
Penny
,
K. E.
Stephan
,
A.
Mechelli
, and
K. J.
Friston
, “
Modelling functional integration: A comparison of structural equation and dynamic causal models
,”
NeuroImage
23
,
S264
S274
(
2004
).
24.
S.
Heitmann
,
M. J.
Aburn
, and
M.
Breakspear
, “
The brain dynamics toolbox for Matlab
,”
Neurocomputing
315
,
82
88
(
2018
).
25.
C. F.
Beckmann
and
S. M.
Smith
, “
Probabilistic independent component analysis for functional magnetic resonance imaging
,”
IEEE Trans. Med. Imaging
23
,
137
152
(
2004
).
26.
A. K.
Seth
, “
A Matlab toolbox for granger causal connectivity analysis
,”
J. Neurosci. Methods
186
,
262
273
(
2010
).
27.
A. K.
Seth
,
A. B.
Barrett
, and
L.
Barnett
, “
Granger causality analysis in neuroscience and neuroimaging
,”
J. Neurosci.
35
,
3293
3297
(
2015
).
28.
K.
Friston
,
R.
Moran
, and
A. K.
Seth
, “
Analysing connectivity with granger causality and dynamic causal modelling
,”
Curr. Opin. Neurobiol.
23
,
172
178
(
2013
).
29.
F.
Protopapa
,
C. I.
Siettos
,
I.
Evdokimidis
, and
N.
Smyrnis
, “
Granger causality analysis reveals distinct spatio-temporal connectivity patterns in motor and perceptual visuo-spatial working memory
,”
Front. Comput. Neurosci.
8
,
146
(
2014
).
30.
D.
Kugiumtzis
and
V. K.
Kimiskidis
, “
Direct causal networks for the study of transcranial magnetic stimulation effects on focal epileptiform discharges
,”
Int. J. Neural Syst.
25
,
1550006
(
2015
).
31.
F.
Protopapa
,
C. I.
Siettos
,
I.
Myatchin
, and
L.
Lagae
, “
Children with well controlled epilepsy possess different spatio-temporal patterns of causal network connectivity during a visual working memory task
,”
Cognit. Neurodyn.
10
,
99
111
(
2016
).
32.
D.
Kugiumtzis
,
C.
Koutlis
,
A.
Tsimpiris
, and
V. K.
Kimiskidis
, “
Dynamics of epileptiform discharges induced by transcranial magnetic stimulation in genetic generalized epilepsy
,”
Int. J. Neural Syst.
27
,
1750037
(
2017
).
33.
E.
Almpanis
and
C.
Siettos
, “
Construction of functional brain connectivity networks from fMRI data with driving and modulatory inputs: An extended conditional granger causality approach
,”
AIMS Neurosci.
7
,
66
(
2020
).
34.
U.
Parlitz
,
L.
Junge
,
W.
Lauterborn
, and
L.
Kocarev
, “
Experimental observation of phase synchronization
,”
Phys. Rev. E
54
,
2115
(
1996
).
35.
F.
Mormann
,
K.
Lehnertz
,
P.
David
, and
C. E.
Elger
, “
Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients
,”
Physica D
144
,
358
369
(
2000
).
36.
F.
Varela
,
J.-P.
Lachaux
,
E.
Rodriguez
, and
J.
Martinerie
, “
The brainweb: Phase synchronization and large-scale integration
,”
Nat. Rev. Neurosci.
2
,
229
239
(
2001
).
37.
C.
Allefeld
and
J.
Kurths
, “
An approach to multivariate phase synchronization analysis and its application to event-related potentials
,”
Int. J. Bifurcation Chaos
14
,
417
426
(
2004
).
38.
D.
Rudrauf
,
A.
Douiri
,
C.
Kovach
,
J.-P.
Lachaux
,
D.
Cosmelli
,
M.
Chavez
,
C.
Adam
,
B.
Renault
,
J.
Martinerie
, and
M.
Le Van Quyen
, “
Frequency flows and the time-frequency dynamics of multivariate phase synchronization in brain signals
,”
NeuroImage
31
,
209
227
(
2006
).
39.
V.
Jirsa
and
V.
Müller
, “
Cross-frequency coupling in real and virtual brain networks
,”
Front. Comput. Neurosci.
7
,
78
(
2013
).
40.
A.
Zakharova
,
M.
Kapeller
, and
E.
Schöll
, “
Chimera death: Symmetry breaking in dynamical networks
,”
Phys. Rev. Lett.
112
,
154101
(
2014
).
41.
D.
Mylonas
,
C.
Siettos
,
I.
Evdokimidis
,
A.
Papanicolaou
, and
N.
Smyrnis
, “
Modular patterns of phase desynchronization networks during a simple visuomotor task
,”
Brain Topogr.
29
,
118
129
(
2016
).
42.
E.
Schöll
, “
Partial synchronization patterns in brain networks
,”
Europhys. Lett.
136
,
18001
(
2022
).
43.
N.
Kopell
and
B.
Ermentrout
, “
Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
15482
15487
(
2004
).
44.
Z.-K.
Gao
,
M.
Small
, and
J.
Kurths
, “
Complex network analysis of time series
,”
Europhys. Lett.
116
,
50001
(
2017
).
45.
Y.
Zou
,
Z.
Zhao
,
D.
Yin
,
M.
Fan
,
M.
Small
,
Z.
Liu
,
C. C.
Hilgetag
, and
J.
Kurths
, “
Brain anomaly networks uncover heterogeneous functional reorganization patterns after stroke
,”
NeuroImage Clin.
20
,
523
530
(
2018
).
46.
K.
Spiliotis
,
K.
Butenko
,
U.
van Rienen
,
J.
Starke
, and
R.
Köhling
, “
Complex network measures reveal optimal targets for deep brain stimulation and identify clusters of collective brain dynamics
,”
Front. Phys.
10
,
1032
(
2022
).
47.
S.
Petkoski
and
V. K.
Jirsa
, “
Transmission time delays organize the brain network synchronization
,”
Philos. Trans. R. Soc. A
377
,
20180132
(
2019
).
48.
S.
Grossberg
and
J. W.
Merrill
, “
A neural network model of adaptively timed reinforcement learning and hippocampal dynamics
,”
Cognit. Brain Res.
1
,
3
38
(
1992
).
49.
Y.
Niv
, “
Reinforcement learning in the brain
,”
J. Math. Psychol.
53
,
139
154
(
2009
).
50.
J.
Richiardi
,
S.
Achard
,
H.
Bunke
, and
D.
Van De Ville
, “
Machine learning with brain graphs: Predictive modeling approaches for functional imaging in systems neuroscience
,”
IEEE Signal Process. Mag.
30
,
58
70
(
2013
).
51.
H.-I.
Suk
,
C.-Y.
Wee
,
S.-W.
Lee
, and
D.
Shen
, “
State-space model with deep learning for functional dynamics estimation in resting-state fMRI
,”
NeuroImage
129
,
292
307
(
2016
).
52.
Z.
Gholami Doborjeh
,
N.
Kasabov
,
M.
Gholami Doborjeh
, and
A.
Sumich
, “
Modelling peri-perceptual brain processes in a deep learning spiking neural network architecture
,”
Sci. Rep.
8
,
8912
(
2018
).
53.
R.
Sun
,
A.
Sohrabpour
,
G. A.
Worrell
, and
B.
He
, “
Deep neural networks constrained by neural mass models improve electrophysiological source imaging of spatiotemporal brain dynamics
,”
Proc. Natl. Acad. Sci.
119
,
e2201128119
(
2022
).
54.
A.
Phinyomark
,
E.
Ibanez-Marcelo
, and
G.
Petri
, “
Resting-state fmri functional connectivity: Big data preprocessing pipelines and topological data analysis
,”
IEEE Trans. Big Data
3
,
415
428
(
2017
).
55.
N.
Altman
and
M.
Krzywinski
, “
The curse(s) of dimensionality
,”
Nat. Methods
15
,
399
400
(
2018
).
56.
W. D.
Penny
,
K. J.
Friston
,
J. T.
Ashburner
,
S. J.
Kiebel
, and
T. E.
Nichols
,
Statistical Parametric Mapping: The Analysis of Functional Brain Images
(
Elsevier
,
Amsterdam
,
2011
).
57.
T.
Madhyastha
,
M.
Peverill
,
N.
Koh
,
C.
McCabe
,
J.
Flournoy
,
K.
Mills
,
K.
King
,
J.
Pfeifer
, and
K. A.
McLaughlin
, “
Current methods and limitations for longitudinal fMRI analysis across development
,”
Dev. Cognit. Neurosci.
33
,
118
128
(
2018
).
58.
M.
Belkin
and
P.
Niyogi
, “
Laplacian eigenmaps for dimensionality reduction and data representation
,”
Neural Comput.
15
,
1373
1396
(
2003
).
59.
R. R.
Coifman
and
S.
Lafon
, “
Diffusion maps
,”
Appl. Comput. Harmon. Anal.
21
,
5
30
(
2006
).
60.
A.
Ansuini
,
A.
Laio
,
J. H.
Macke
, and
D.
Zoccolan
, “
Intrinsic dimension of data representations in deep neural networks
,”
Adv. Neural Inf. Process. Syst.
32
,
11
(
2019
).
61.
I. K.
Gallos
,
E.
Galaris
, and
C. I.
Siettos
, “
Construction of embedded fMRI resting-state functional connectivity networks using manifold learning
,”
Cognit. Neurodyn.
15
,
585
608
(
2021
).
62.
A.
Qiu
,
A.
Lee
,
M.
Tan
, and
M. K.
Chung
, “
Manifold learning on brain functional networks in aging
,”
Med. Image Anal.
20
,
52
60
(
2015
).
63.
S. T.
Roweis
and
L. K.
Saul
, “
Nonlinear dimensionality reduction by locally linear embedding
,”
Science
290
,
2323
2326
(
2000
).
64.
N.
Pospelov
,
A.
Tetereva
,
O.
Martynova
, and
K.
Anokhin
, “
The laplacian eigenmaps dimensionality reduction of fMRI data for discovering stimulus-induced changes in the resting-state brain activity
,”
Neuroimage: Rep.
1
,
100035
(
2021
).
65.
S.
Gao
,
G.
Mishne
, and
D.
Scheinost
, “
Nonlinear manifold learning in functional magnetic resonance imaging uncovers a low-dimensional space of brain dynamics
,”
Hum. Brain Mapp.
42
,
4510
4524
(
2021
).
66.
I. K.
Gallos
,
K.
Gkiatis
,
G. K.
Matsopoulos
, and
C.
Siettos
, “
Isomap and machine learning algorithms for the construction of embedded functional connectivity networks of anatomically separated brain regions from resting state fMRI data of patients with schizophrenia
,”
AIMS Neurosci.
8
,
295
(
2021
).
67.
I.
Gallos
,
L.
Mantonakis
,
E.
Spilioti
,
E.
Kattoulas
,
E.
Savvidou
,
E.
Anyfandi
,
E.
Karavasilis
,
N.
Kelekis
,
N.
Smyrnis
, and
C.
Siettos
, “
The relation of integrated psychological therapy to resting state functional brain connectivity networks in patients with schizophrenia
,”
Psychiatry Res.
306
,
114270
(
2021
).
68.
M. A.
Cox
and
T. F.
Cox
, “Multidimensional scaling,” in Handbook of Data Visualization (Springer, Berlin, 2008), pp. 315–347.
69.
J. B.
Tenenbaum
,
V.
De Silva
, and
J. C.
Langford
, “
A global geometric framework for nonlinear dimensionality reduction
,”
Science
290
,
2319
2323
(
2000
).
70.
B.
Nadler
,
S.
Lafon
,
I.
Kevrekidis
, and
R. R.
Coifman
, “Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators,” in Advances in Neural Information Processing Systems (MIT Press, 2006), pp. 955–962.
71.
B.
Nadler
,
S.
Lafon
,
R.
Coifman
, and
I. G.
Kevrekidis
, “Diffusion maps – a probabilistic interpretation for spectral embedding and clustering algorithms,” in Principal Manifolds for Data Visualization and Dimension Reduction, edited by A. N. Gorban, B. Kégl, D. C. Wunsch, and A. Y. Zinovyev (Springer, Berlin, 2008), pp. 238–260.
72.
T. N.
Thiem
,
M.
Kooshkbaghi
,
T.
Bertalan
,
C. R.
Laing
, and
I. G.
Kevrekidis
, “
Emergent spaces for coupled oscillators
,”
Front. Comput. Neurosci.
14
,
36
(
2020
).
73.
I.
Mezić
, “
Analysis of fluid flows via spectral properties of the Koopman operator
,”
Annu. Rev. Fluid Mech.
45
,
357
378
(
2013
).
74.
M. O.
Williams
,
I. G.
Kevrekidis
, and
C. W.
Rowley
, “
A data–driven approximation of the Koopman operator: Extending dynamic mode decomposition
,”
J. Nonlinear Sci.
25
,
1307
1346
(
2015
).
75.
S. L.
Brunton
,
B. W.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control
,”
PLoS One
11
,
e0150171
(
2016
).
76.
Q.
Li
,
F.
Dietrich
,
E. M.
Bollt
, and
I. G.
Kevrekidis
, “
Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator
,”
Chaos
27
,
103111
(
2017
).
77.
E. M.
Bollt
,
Q.
Li
,
F.
Dietrich
, and
I.
Kevrekidis
, “
On matching, and even rectifying, dynamical systems through Koopman operator eigenfunctions
,”
SIAM J. Appl. Dyn. Syst.
17
,
1925
1960
(
2018
).
78.
F.
Dietrich
,
T. N.
Thiem
, and
I. G.
Kevrekidis
, “
On the Koopman operator of algorithms
,”
SIAM J. Appl. Dyn. Syst.
19
,
860
885
(
2020
).
79.
D.
Lehmberg
,
F.
Dietrich
, and
G.
Köster
, “
Modeling melburnians—using the Koopman operator to gain insight into crowd dynamics
,”
Transp. Res. Part C: Emerg. Technol.
133
,
103437
(
2021
).
80.
R. R.
Coifman
and
S.
Lafon
, “
Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions
,”
Appl. Comput. Harmon. Anal.
21
,
31
52
(
2006
).
81.
C. J.
Dsilva
,
R.
Talmon
,
N.
Rabin
,
R. R.
Coifman
, and
I. G.
Kevrekidis
, “
Nonlinear intrinsic variables and state reconstruction in multiscale simulations
,”
J. Chem. Phys.
139
,
11B608
(
2013
).
82.
P. G.
Papaioannou
,
R.
Talmon
,
I. G.
Kevrekidis
, and
C.
Siettos
, “
Time-series forecasting using manifold learning, radial basis function interpolation, and geometric harmonics
,”
Chaos
32
,
083113
(
2022
).
83.
N.
Evangelou
,
F.
Dietrich
,
E.
Chiavazzo
,
D.
Lehmberg
,
M.
Meila
, and
I. G.
Kevrekidis
, “
Double diffusion maps and their latent harmonics for scientific computations in latent space
,”
J. Comput. Phys.
485
,
112072
(
2023
).
84.
C.
Büchel
and
K. J.
Friston
, “
Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modelling and fMRI
,”
Cereb. Cortex
7
,
768
778
(
1997
).
85.
K. J.
Friston
,
L.
Harrison
, and
W.
Penny
, “
Dynamic causal modelling
,”
NeuroImage
19
,
1273
1302
(
2003
).
86.
N.
Nicolaou
and
T. G.
Constandinou
, “
A nonlinear causality estimator based on non-parametric multiplicative regression
,”
Front. Neuroinf.
10
,
19
(
2016
).
87.
W. D.
Penny
,
K. E.
Stephan
,
A.
Mechelli
, and
K. J.
Friston
, “
Comparing dynamic causal models
,”
NeuroImage
22
,
1157
1172
(
2004
).
88.
N.
Tzourio-Mazoyer
,
B.
Landeau
,
D.
Papathanassiou
,
F.
Crivello
,
O.
Etard
,
N.
Delcroix
,
B.
Mazoyer
, and
M.
Joliot
, “
Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
,”
NeuroImage
15
,
273
289
(
2002
).
89.
K. J.
Friston
,
A. P.
Holmes
,
K. J.
Worsley
,
J.-P.
Poline
,
C. D.
Frith
, and
R. S.
Frackowiak
, “
Statistical parametric maps in functional imaging: A general linear approach
,”
Hum. Brain Mapp.
2
,
189
210
(
1994
).
90.
K. J.
Friston
,
A. P.
Holmes
,
J.
Poline
,
P.
Grasby
,
S.
Williams
,
R. S.
Frackowiak
, and
R.
Turner
, “
Analysis of fMRI time-series revisited
,”
NeuroImage
2
,
45
53
(
1995
).
91.
K. J.
Worsley
and
K. J.
Friston
, “
Analysis of fMRI time-series revisited—Again
,”
NeuroImage
2
,
173
181
(
1995
).
92.
C.
Büchel
,
O.
Josephs
,
G.
Rees
,
R.
Turner
,
C. D.
Frith
, and
K. J.
Friston
, “
The functional anatomy of attention to visual motion. A functional MRI study
,”
Brain: J. Neurol.
121
,
1281
1294
(
1998
).
93.
C. J.
Dsilva
,
R.
Talmon
,
R. R.
Coifman
, and
I. G.
Kevrekidis
, “
Parsimonious representation of nonlinear dynamical systems through manifold learning: A chemotaxis case study
,”
Appl. Comput. Harmon. Anal.
44
,
759
773
(
2018
).
94.
S.
Lee
,
M.
Kooshkbaghi
,
K.
Spiliotis
,
C. I.
Siettos
, and
I. G.
Kevrekidis
, “
Coarse-scale PDEs from fine-scale observations via machine learning
,”
Chaos
30
,
013141
(
2020
).
95.
E.
Galaris
,
G.
Fabiani
,
I.
Gallos
,
I.
Kevrekidis
, and
C.
Siettos
, “
Numerical bifurcation analysis of PDEs from lattice Boltzmann model simulations: A parsimonious machine learning approach
,”
J. Sci. Comput.
92
,
34
(
2022
).
96.
E.
Chiavazzo
,
C. W.
Gear
,
C. J.
Dsilva
,
N.
Rabin
, and
I. G.
Kevrekidis
, “
Reduced models in chemical kinetics via nonlinear data-mining
,”
Processes
2
,
112
140
(
2014
).
97.
T.
Chin
,
J.
Ruth
,
C.
Sanford
,
R.
Santorella
,
P.
Carter
, and
B.
Sandstede
, “
Enabling equation-free modeling via diffusion maps
,”
J. Dyn. Differ. Equ.
(published online 2022).
98.
E. J.
Nyström
, “
Über die praktische auflösung von integralgleichungen mit anwendungen auf randwertaufgaben
,”
Acta Math.
54
,
185
204
(
1930
).
99.
D. G.
Patsatzis
,
L.
Russo
,
I. G.
Kevrekidis
, and
C.
Siettos
, “
Data-driven control of agent-based models: An equation/variable-free machine learning approach
,”
J. Comput. Phys.
478
,
111953
(
2023
).
100.
I.
Mezić
, “
Spectral properties of dynamical systems, model reduction and decompositions
,”
Nonlinear Dyn.
41
,
309
325
(
2005
).
101.
M.
Budišić
,
R.
Mohr
, and
I.
Mezić
, “
Applied Koopmanism
,”
Chaos
22
,
047510
(
2012
).
102.
F.
Dietrich
,
T. N.
Thiem
, and
I. G.
Kevrekidis
, “
On the Koopman operator of algorithms
,”
SIAM J. Appl. Dyn. Syst.
19
,
860
885
(
2020
).
103.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
104.
P. J.
Schmid
, “
Dynamic mode decomposition and its variants
,”
Annu. Rev. Fluid Mech.
54
,
225
254
(
2022
).
105.
M.
Korda
and
I.
Mezić
, “
Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control
,”
Automatica
93
,
149
160
(
2018
).
106.
D.
Lehmberg
,
F.
Dietrich
,
G.
Köster
, and
H.-J.
Bungartz
, “
Datafold: Data-driven models for point clouds and time series on manifolds
,”
J. Open Source Software
5
,
2283
(
2020
).
107.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
et al., “
Scikit-learn: Machine learning in python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
108.
B.
Ripley
,
W.
Venables
, and
M. B.
Ripley
, “
Package ‘nnet’
,”
R Package vers.
7
,
700
(
2016
).
109.
A. F.
Psaros
,
X.
Meng
,
Z.
Zou
,
L.
Guo
, and
G. E.
Karniadakis
, “
Uncertainty quantification in scientific machine learning: Methods, metrics, and comparisons
,”
J. Comput. Phys.
477
,
111902
(
2023
).
110.
D.
Giannakis
, “
Data-driven spectral decomposition and forecasting of ergodic dynamical systems
,”
Appl. Comput. Harmon. Anal.
47
,
338
396
(
2019
).
You do not currently have access to this content.