We study three different strategies of vaccination in an SEIRS (Susceptible–Exposed–Infected–Recovered–Susceptible) seasonal forced model, which are ( i) continuous vaccination; ( i i) periodic short-time localized vaccination, and ( i i i) periodic pulsed width campaign. Considering the first strategy, we obtain an expression for the basic reproduction number and infer a minimum vaccination rate necessary to ensure the stability of the disease-free equilibrium (DFE) solution. In the second strategy, short duration pulses are added to a constant baseline vaccination rate. The pulse is applied according to the seasonal forcing phases. The best outcome is obtained by locating intensive immunization at inflection of the transmissivity curve. Therefore, a vaccination rate of 44.4 % of susceptible individuals is enough to ensure DFE. For the third vaccination proposal, additionally to the amplitude, the pulses have a prolonged time width. We obtain a non-linear relationship between vaccination rates and the duration of the campaign. Our simulations show that the baseline rates, as well as the pulse duration, can substantially improve the vaccination campaign effectiveness. These findings are in agreement with our analytical expression. We show a relationship between the vaccination parameters and the accumulated number of infected individuals, over the years, and show the relevance of the immunization campaign annual reaching for controlling the infection spreading. Regarding the dynamical behavior of the model, our simulations show that chaotic and periodic solutions as well as bi-stable regions depend on the vaccination parameters range.

1.
S.
Xia
,
C. C.
Gullickson
,
C. J. E.
Metcalf
,
B. T.
Grenfell
, and
M. J.
Mina
, “
Assessing the effects of measles virus infections on childhood infectious disease mortality in Brazil
,”
J. Infect. Dis.
227
,
133
140
(
2023
).
2.
K. A.
Glatter
and
P.
Finkelman
, “
History of the plague: An ancient pandemic for the age of COVID-19
,”
Am. J. Med.
134
(
2
),
176
181
(
2021
).
3.
T. M.
Tumpey
,
C. F.
Basler
,
P. V.
Aguilar
,
H.
Zeng
,
A.
Solórzano
,
D. E.
Swayne
,
N. J.
Cox
,
J. M.
Katz
,
J. K.
Taubenberger
,
P.
Palese
, and
A.
García-Sastre
, “
Spanish influenza pandemic virus
,”
Science
310
,
77
80
(
2005
).
4.
C.
Manchein
,
E. L.
Brugnago
,
R. M.
da Silva
,
C. F. O.
Mendes
, and
M. W.
Beims
, “
Strong correlations between power-law growth of COVID-19 in four continents and the inefficiency of soft quarantine strategies
,”
Chaos
30
,
041102
(
2020
).
5.
M.
Aguiar
,
S.
Ballesteros
,
B. W.
Kooi
, and
N.
Stollenwerk
, “
The role of seasonality and import in a minimalistic multi-strain dengue model capturing differences between primary and secondary infections: Complex dynamics and its implications for data analysis
,”
J. Theor. Biol.
289
,
181
196
(
2011
).
6.
N.
Dalal
,
D.
Greenhalgh
, and
X.
Mao
, “
A stochastic model for internal HIV dynamics
,”
J. Math. Anal. Appl.
341
,
1084
1101
(
2008
).
7.
L. A.
Meyers
,
B.
Pourbohloul
,
M. E. J.
Newman
,
D. M.
Skowronski
, and
R. C.
Brunham
, “
Network theory and SARS: Predicting outbreak diversity
,”
J. Theor. Biol.
232
(
1
),
71
81
(
2005
).
8.
L.
Mao
and
L.
Bian
, “
Spatial–temporal transmission of influenza and its health risks in an urbanized area
,”
Comput. Environ. Urban Syst.
34
(
3
),
204
215
(
2010
).
9.
S. V.
Scarpino
and
G.
Petri
, “
On the predictability of infectious disease outbreaks
,”
Nat. Commun.
10
,
898
(
2019
).
10.
S.
Altizer
,
A.
Dobson
,
P.
Hosseini
,
P.
Hudson
,
M.
Pascual
, and
P.
Rohani
, “
Seasonality and the dynamics of infectious diseases
,”
Ecol. Lett.
9
,
467
484
(
2006
).
11.
B.
Buonomo
and
N.
Chitnis
, “
Seasonality in epidemic models: A literature review
,”
Ric. di Mat.
67
,
7
25
(
2018
).
12.
M. B.
Hoshen
and
A. P.
Morse
, “
A weather-driven model of malaria transmission
,”
Malar. J.
3
,
32
(
2004
).
13.
B. F.
Finkenstadt
and
B. T.
Grenfell
, “
Time series modelling of childhood diseases: A dynamical systems approach
,”
J. R. Stat. Soc. Ser. C Appl. Stat.
49
(
2
),
187
205
(
2000
).
14.
N. C.
Grassly
and
C.
Fraser
, “
Seasonal infectious disease epidemiology
,”
Proc. R. Soc. B: Biol. Sci.
273
(
1600
),
2541
2550
(
2006
).
15.
N.
Azimaqin
,
Z.
Pen
,
X.
Ren
,
Y.
Wei
, and
X.
Liu
, “
Vaccine failure, seasonality and demographic changes associate with mumps outbreaks in Jiangsu Province, China: Age-structured mathematical modelling study
,”
J. Theor. Biol.
544
,
111125
(
2022
).
16.
M.
Aguiar
,
N.
Stollenwerk
, and
B. W.
Kooi
, “
Torus bifurcations, isolas and chaotic attractors in a simple dengue fever model with ADE and temporary cross immunity
,”
Int. J. Comput. Math.
86
(
10–11
),
1867
1877
(
2009
).
17.
M.
Mugnaine
,
E. C.
Gabrick
,
P. R.
Protachevicz
,
K. C.
Iarosz
,
S. L. T.
de Souza
,
A. C. L.
Almeida
,
A. M.
Batista
,
I. L.
Caldas
,
J. D.
Szezech
Jr.
, and
R. L.
Viana
, “
Control attenuation and temporary immunity in a cellular automata SEIR epidemic model
,”
Chaos, Solitons and Fractals
155
,
111784
(
2022
).
18.
A. M.
Batista
,
S. L. T.
de Souza
,
K. C.
Iarosz
,
A. C. L.
Almeida
,
J. D.
Szezech
Jr.
,
E. C.
Gabrick
,
M.
Mugnaine
, and
I. L.
Caldas
, “
Simulation of deterministic compartmental models for infectious diseases dynamics
,”
Rev. Bras. de Ensino de Fís.
43
,
e20210171
(
2021
).
19.
B. T.
Grenfell
,
B. M.
Bolker
, and
A.
Kleczkowski
, “
Seasonality and extinction in chaotic metapopulations
,”
Proc. R. Soc. Lond. B
259
,
97
103
(
1995
).
20.
M. J.
Keeling
and
P.
Rohani
,
Modeling Infectious Diseases in Humans and Animals
(
Princeton University Press
,
2008
).
21.
S.
Bilal
,
B. K.
Singh
,
A.
Prasad
, and
E.
Michael
, “
Effects of quasiperiodic forcing in epidemic models
,”
Chaos
26
,
093115
(
2016
).
22.
G.
Tanaka
and
K.
Aihara
, “
Effects of seasonal variation patterns on recurrent outbreaks in epidemic models
,”
J. Theor. Biol.
317
,
87
95
(
2013
).
23.
L. F.
Olsen
and
W. M.
Schaffer
, “
Chaos versus noisy periodicity: Alternative hypotheses for childhood epidemics
,”
Science
249
,
499
504
(
1990
).
24.
E. C.
Gabrick
,
E.
Sayari
,
P. R.
Protachevicz
,
J. D.
Szezech Jr.
,
K. C.
Iarosz
,
S. L. T.
de Souza
,
A. C. L.
Almeida
,
R. L.
Viana
,
I. L.
Caldas
, and
A. M.
Batista
, “
Unpredictability in seasonal infectious diseases spread
,”
Chaos, Solitons and Fractals
166
,
113001
(
2023
).
25.
W. P.
London
and
J. A.
Yorke
, “
Recurrent outbreaks of measles, chickenpox and mumps: I. Seasonal variation in contact rates
,”
Am. J. Epidemiol.
98
(
6
),
453
468
(
1973
).
26.
D.
Greenhalgh
and
I. A.
Moneim
, “
SIRS epidemic model and simulations using different types of seasonal contact rate
,”
Syst. Anal. Model. Simul.
43
(
5
),
573
600
(
2003
).
27.
J. P. M.
de Carvalho
and
A. A.
Rodrigues
, “
Strange attractors in a dynamical system inspired by a seasonally forced SIR model
,”
Physica D
434
,
133268
(
2022
).
28.
C. J. E.
Metcalf
,
O. N.
Bjornstad
,
B. T.
Grenfell
, and
V.
Andreasen
, “
Seasonality and comparative dynamics of six childhood infections in pre-vaccination Copenhagen
,”
Proc. R. Soc. B
276
,
4111
4118
(
2009
).
29.
M. J.
Keeling
,
P.
Rohani
, and
B. T.
Grenfell
, “
Seasonally forced disease dynamics explored as switching between attractors
,”
Physica D
148
,
317
335
(
2001
).
30.
I.
Cooper
,
A.
Mondal
, and
C. G.
Antonopoulos
, “
A SIR model assumption for the spread of COVID-19 in different communities
,”
Chaos, Solitons and Fractals
139
,
110057
(
2020
).
31.
S.
Ansari
,
M.
Anvari
,
O.
Pfeffer
,
N.
Molkenthin
,
M. R.
Moosavi
,
F.
Hellmann
,
J.
Heitzig
, and
J.
Kurths
, “
Moving the epidemic tipping point through topologically targeted social distancing
,”
Eur. Phys. J. Spec. Top.
230
,
3273
3280
(
2021
).
32.
B. A.
Mello
, “
One-way pedestrian traffic is a means of reducing personal encounters in epidemics
,”
Front. Phys.
8
,
376
(
2020
).
33.
E. L.
Brugnago
,
R. M.
da Silva
,
C.
Manchein
, and
M. W.
Beims
, “
How relevant is the decision of containment measures against COVID-19 applied ahead of time?
,”
Chaos, Solitons and Fractals
140
,
110164
(
2020
).
34.
S. L. T.
de Souza
,
A. M.
Batista
,
I. L.
Caldas
,
K. C.
Iarosz
, and
J. D.
Szezech
, Jr.
, “
Dynamics of epidemics: Impact of easing restrictions and control of infection spread
,”
Chaos, Solitons and Fractals
142
,
110431
(
2021
).
35.
C.
Balsa
,
I.
Lopes
,
T.
Guarda
, and
J.
Rufino
, “
Computational simulation of the COVID-19 epidemic with the SEIR stochastic model
,”
Comput. Math. Organ. Theory
29
,
507
525
(2023).
36.
Y.
Zou
,
W.
Yang
,
J.
Lai
,
J.
How
, and
W.
Lin
, “
Vaccination and quarantine effect on COVID-19 transmission dynamics incorporating Chinese-Spring-Festival travel rush: Modeling and simulations
,”
Bull. Math. Biol.
84
,
30
(
2022
).
37.
M.
Etxeberria-Etxaniz
,
S.
Alonso-Quesada
, and
M.
De la Sen
, “
On an SEIR epidemic model with vaccination of newborns and periodic impulsive vaccination with eventual on-line adapted vaccination strategies to the varying levels of the susceptible subpopulation
,”
Appl. Sci.
10
(
22
),
8296
(
2020
).
38.
M.
De la Sen
,
S.
Alonso-Quesada
,
A.
Ibeas
, and
R.
Nistal
, “
On a discrete SEIR epidemic model with two-doses delayed feedback vaccination control on the susceptible
,”
Vaccines
9
(
4
),
398
(
2021
).
39.
M.
Voyseym
,
S. A.
Clemens
,
S.
Madhi
,
L.
Weckx
,
P.
Folegatti
,
P.
Aley
,
B.
Angus
,
V.
Baillie
,
S.
Barnabas
,
Q.
Bhorat
,
S.
Bibi
,
C.
Briner
,
P.
Cicconi
,
E.
Clutterbuck
,
A.
Collins
,
C.
Cutland
,
T.
Darton
,
K.
Dheda
, and
C.
Chritina
, “
Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: A pooled analysis of four randomised trials
,”
The Lancet
397
,
881
891
(
2021
).
40.
H. A.
Thompson
,
A. B.
Hogan
,
P. G. T.
Walker
,
P.
Winskill
,
I.
Zongo
,
I.
Sagara
,
H.
Tinto
,
J. B.
Ouedraogo
,
A.
Dicko
,
D.
Chandramohan
,
B.
Greenwood
,
M.
Cairns
, and
A. C.
Ghani
, “
Seasonal use case for the RTS,S/AS01 malaria vaccine: A mathematical modelling study
,”
Lancet Glob. Health
10
,
e1782
e1792
(
2022
).
41.
N. A. M.
Molinari
,
I. R.
Ortega-Sanchez
,
M. L.
Messonnier
,
W. W.
Thompson
,
P. M.
Wortley
,
E.
Weintraub
, and
C. B.
Bridges
, “
The annual impact of seasonal influenza in the US: Measuring disease burden and costs
,”
Vaccine
25
(
27
),
5086
5096
(
2007
).
42.
M. J.
Keeling
and
B. T.
Grenfell
, “
Understanding the persistence of measles: Reconciling theory, simulation and observation
,”
Proc. R. Soc. Lond. Ser. B: Biol. Sci.
269
(
1489
),
335
343
(
2002
).
43.
S.
Gao
,
Y.
Liu
,
J. J.
Nieto
, and
H.
Andrade
, “
Seasonality and mixed vaccination strategy in an epidemic model with vertical transmission
,”
Math. Comput. Simul.
81
,
1855
1868
(
2011
).
44.
C.
Atchison
,
B.
Lopman
, and
W. J.
Edmunds
, “
Modelling the seasonality of rotavirus disease and the impact of vaccination in England and Wales
,”
Vaccine
28
,
3118
3126
(
2010
).
45.
B.
Shulgin
,
L.
Stone
, and
Z.
Agur
, “
Pulse vaccination strategy in the SIR epidemic model
,”
Bull. Math. Biol.
60
,
1123
1148
(
1998
).
46.
E. C.
Gabrick
,
P. R.
Protachevicz
,
A. M.
Batista
,
K. C.
Iarosz
,
S. L. T.
de Souza
,
A. C. L.
Almeida
,
J. D.
Szezech
, Jr.
,
M.
Mugnaine
, and
I. L.
Caldas
, “
Effect of two vaccine doses in the SEIR epidemic model using a stochastic cellular automaton
,”
Physica A
597
,
127258
(
2022
).
47.
J.
Duarte
,
C.
Januário
,
N.
Martins
,
J. M.
Seoane
, and
M. A. F.
Sanjuán
, “
Controlling infectious diseases: The decisive phase effect on a seasonal vaccination strategy
,”
Int. J. Bifurcat. Chaos
31
(
15
),
2130044
(
2021
).
48.
X.
Wang
,
H.
Pen
,
B.
Shi
,
D.
Jiang
,
S.
Zhang
, and
B.
Chen
, “
Optimal vaccination strategy of a constrained time-varying SEIR epidemic model
,”
Commun. Nonlinear Sci. Numer. Simul.
67
,
37
48
(
2019
).
49.
Z.
Bai
and
Y.
Zhou
, “
Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contact rate
,”
Nonlinear Anal. Real World Appl.
13
,
1060
1068
(
2012
).
50.
I. A.
Moneim
and
D.
Greenhalgh
, “
Use of a periodic vaccination strategy to control the spread of epidemics with seasonally varying contact rate
,”
Math. Biosci. Eng.
2
(
3
),
591
611
(
2005
).
51.
S. H.
Ho
,
D.
He
, and
R.
Eftimie
, “
Mathematical models of transmission dynamics and vaccine strategies in Hong Kong during the 2017–2018 winter influenza season
,”
J. Theor. Biol.
476
,
74
94
(
2019
).
52.
C. J. E.
Metcalf
,
J.
Lessler
,
P.
Klepac
,
F.
Cutts
, and
B. T.
Grenfell
, “
Impact of birth rate, seasonality and transmission rate on minimum levels of coverage needed for rubella vaccination
,”
Epidemiol. Infect.
140
(
12
),
2290
2301
(
2012
).
53.
D. J.
Nokes
and
J.
Swinton
, “
The control of childhood viral infections by pulse vaccination
,”
J. Math. Appl. Med. Biol.
12
,
29
53
(
1995
).
54.
Z.
Agur
,
L.
Cojocaru
,
G.
Mazor
,
R. M.
Anderson
, and
Y. L.
Danon
, “
Pulse mass measles vaccination across age cohorts
,”
Proc. Natl. Acad. Sci. U.S.A.
90
,
11698
11702
(
1993
).
55.
J. D.
Grabenstein
and
R. L.
Nevin
, “
Mass immunization programs: Principles and standards
,” in
Mass Vaccination: Global Aspects—Progress and Obstacles. Current Topics in Microbiology and Immunology
(Springer, Berlin, Heidelberg, 2006), Vol 304.
56.
A. K.
Alkhamis
and
M.
Hosny
, “
A synthesis of pulse influenza vaccination policies using an efficient controlled elitism non-dominated sorting genetic algorithm (CENSGA)
,”
Electronics
11
(
22
),
3711
(
2022
).
57.
P.
Song
,
Y.
Lou
, and
Y.
Xiao
, “
A spatial SEIRS reaction–diffusion model in heterogeneous environment
,”
J. Differ. Equ.
267
,
5084
5114
(
2019
).
58.
K. L.
Cooke
, “
Analysis of an SEIRS epidemic model with two delays
,”
J. Math. Biol.
35
,
240
260
(
1996
).
59.
O. N.
Bjørnstad
,
Epidemics: Models and Data Using R
(
Springer
,
2018
).
60.
J. D.
Hernández Guillén
,
A.
Martín del Rey
, and
L.
Hernández Encinas
, “
Study of the stability of a SEIRS model for computer worm propagation
,”
Physica A
479
,
411
421
(
2017
).
61.
T.
Tél
and
M.
Gruiz
,
Chaotic Dynamics: An Introduction Based on Classical Mechanics
(
Cambridge University Press
,
2006
).
62.
R. M.
Anderson
and
R. M.
May
,
Infectious Diseases of Humans: Dynamics and Control
(
Oxford University Press
,
1992
).
63.
C. L.
Wesley
and
L. J. S.
Allen
, “
The basic reproduction number in epidemic models with periodic demographics
,”
J. Biol. Dyn.
3
(
2–3
),
116
129
(
2009
).
64.
G.
Meinsma
, “
Elementary proof of the Routh-Hurwitz test
,”
Syst. Control Lett.
25
(
4
),
237
242
(
1995
).
65.
A.
Mclean
and
R.
Anderson
, “
Measles in developing countries. Part II. The predicted impact of mass vaccination
,”
Epidemiol. Infect.
100
(
3
),
419
442
(
1988
).
66.
F.
Henderson Fenner
,
Z.
Jezek
, and
I. D.
Ladnyi
, and
World Health Organization
, “
Smallpox and its eradication
,”
History Int. Public Health
6
,
1371
1409
(
1988
), available at https://www.aphl.org/programs/preparedness/Smallpox/pdf/9241561106.pdf.
67.
S.
Bagcchi
, “
The World’s largest COVID-19 vaccination campaign
,”
Lancet Infect. Dis.
21
(
3
),
323
(
2021
).
68.
J. C.
Butcher
,
The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
(
Wiley, Wiley-Interscience
,
1987
).
69.
E. S.
Medeiros
,
I. L.
Caldas
,
M. S.
Baptista
, and
U.
Feudel
, “
Trapping phenomenon attenuates the consequences of tipping points for limit cycles
,”
Sci. Rep.
7
,
42351
(
2017
).
70.
K. T.
Alligood
,
T. D.
Sauer
, and
J. A.
Yorke
,
Chaos: An Introduction to Dynamical Systems
(
Springer
,
1996
).
You do not currently have access to this content.