Localized phenomena abound in nature and throughout the physical sciences. Some universal mechanisms for localization have been characterized, such as in the snaking bifurcations of localized steady states in pattern-forming partial differential equations. While much of this understanding has been targeted at steady states, recent studies have noted complex dynamical localization phenomena in systems of coupled oscillators. These localized states can come in the form of symmetry-breaking chimera patterns that exhibit coexistence of coherence and incoherence in symmetric networks of coupled oscillators and gap solitons emerging in the bandgap of parametrically driven networks of oscillators. Here, we report detailed numerical continuations of localized time-periodic states in systems of coupled oscillators, while also documenting the numerous bifurcations they give way to. We find novel routes to localization involving bifurcations of heteroclinic cycles in networks of Janus oscillators and strange bifurcation diagrams resembling chaotic tangles in a parametrically driven array of coupled pendula. We highlight the important role of discrete symmetries and the symmetric branch points that emerge in symmetric models.

1.
J. J.
Bramburger
and
B.
Sandstede
, “
Spatially localized structures in lattice dynamical systems
,”
J. Nonlinear Sci.
30
,
603
644
(
2020
).
2.
J. J.
Bramburger
, “
Isolas of multi-pulse solutions to lattice dynamical systems
,”
Proc. R. Soc. Edinb. Sec. A: Math.
151
,
916
952
(
2021
).
3.
M.
Beck
,
J.
Knobloch
,
D. J.
Lloyd
,
B.
Sandstede
, and
T.
Wagenknecht
, “
Snakes, ladders, and isolas of localized patterns
,”
SIAM J. Math. Anal.
41
,
936
972
(
2009
).
4.
M.
Tian
,
J. J.
Bramburger
, and
B.
Sandstede
, “
Snaking bifurcations of localized patterns on ring lattices
,”
IMA J. Appl. Math.
86
,
1112
1140
(
2021
).
5.
J. J.
Bramburger
and
B.
Sandstede
, “
Localized patterns in planar bistable weakly coupled lattice systems
,”
Nonlinearity
33
,
3500
(
2020
).
6.
H.
Shi
and
Y.
Zhang
, “
Existence of breathers for discrete nonlinear Schrödinger equations
,”
Appl. Math. Lett.
50
,
111
118
(
2015
).
7.
R.
Parker
,
P.
Kevrekidis
, and
B.
Sandstede
, “
Existence and spectral stability of multi-pulses in discrete Hamiltonian lattice systems
,”
Phys. D
408
,
132414
(
2020
).
8.
S.
Flach
and
C. R.
Willis
, “
Discrete breathers
,”
Phys. Rep.
295
,
181
264
(
1998
).
9.
J.
Cuevas-Maraver
and
P. G.
Kevrekidis
, “Discrete breathers in ϕ 4 and related models,” in A Dynamical Perspective on the ϕ 4 Model (Springer, 2019), pp. 137–162.
10.
R.
Parker
and
A.
Aceves
, “
Standing-wave solutions in twisted multicore fibers
,”
Phys. Rev. A
103
,
053505
(
2021
).
11.
M.
Clerc
,
S.
Coulibaly
,
M.
Ferré
, and
R.
Rojas
, “
Chimera states in a Duffing oscillators chain coupled to nearest neighbors
,”
Chaos
28
,
083126
(
2018
).
12.
F.
Fontanela
,
A.
Grolet
,
L.
Salles
,
A.
Chabchoub
, and
N.
Hoffmann
, “
Dark solitons, modulation instability and breathers in a chain of weakly nonlinear oscillators with cyclic symmetry
,”
J. Sound Vib.
413
,
467
481
(
2018
).
13.
B.
Niedergesäß
,
A.
Papangelo
,
A.
Grolet
,
A.
Vizzaccaro
,
F.
Fontanela
,
L.
Salles
,
A.
Sievers
, and
N.
Hoffmann
, “
Experimental observations of nonlinear vibration localization in a cyclic chain of weakly coupled nonlinear oscillators
,”
J. Sound Vib.
497
,
115952
(
2021
).
14.
A.
Papangelo
,
N.
Hoffmann
,
A.
Grolet
,
M.
Stender
, and
M.
Ciavarella
, “
Multiple spatially localized dynamical states in friction-excited oscillator chains
,”
J. Sound Vib.
417
,
56
64
(
2018
).
15.
A. F.
Vakakis
,
L. I.
Manevitch
,
Y. V.
Mikhlin
,
V. N.
Pilipchuk
, and
A. A.
Zevin
,
Normal Modes and Localization in Nonlinear Systems
(
Springer
,
2001
).
16.
I.
Shiroky
,
A.
Papangelo
,
N.
Hoffmann
, and
O.
Gendelman
, “
Nucleation and propagation of excitation fronts in self-excited systems
,”
Phys. D
401
,
132176
(
2020
).
17.
C.-H.
Chiu
,
W.-W.
Lin
, and
C.-S.
Wang
, “
Synchronization in lattices of coupled oscillators with various boundary conditions
,”
Nonlinear Anal.: Theory Methods Appl.
46
,
213
229
(
2001
).
18.
A.
Papangelo
,
A.
Grolet
,
L.
Salles
,
N.
Hoffmann
, and
M.
Ciavarella
, “
Snaking bifurcations in a self-excited oscillator chain with cyclic symmetry
,”
Commun. Nonlinear Sci. Numer. Simul.
44
,
108
119
(
2017
).
19.
M. A.
Schwemmer
and
T. J.
Lewis
, “The theory of weakly coupled oscillators,” in Phase Response Curves in Neuroscience: Theory, Experiment, and Analysis (Springer, 2012), pp. 3–31.
20.
E. M.
Izhikevich
,
Y.
Kuramoto
et al., “Weakly coupled oscillators,” in
Encyclopedia of Mathematical Physics
(Academic Press, 2006), Vol. 5, p. 448.
21.
F. C.
Hoppensteadt
and
E. M.
Izhikevich
,
Weakly Connected Neural Networks
(
Springer Science & Business Media
,
1997
), Vol. 126.
22.
J.
Hale
, Ordinary Differential Equations, Dover Books on Mathematics Series (Dover Publications, 2009).
23.
G. B.
Ermentrout
and
N.
Kopell
, “
Multiple pulse interactions and averaging in systems of coupled neural oscillators
,”
J. Math. Biol.
29
,
195
217
(
1991
).
24.
K. C.
Wedgwood
,
K. K.
Lin
,
R.
Thul
, and
S.
Coombes
, “
Phase-amplitude descriptions of neural oscillator models
,”
J. Math. Neurosci.
3
,
2
(
2013
).
25.
Y.
Kuramoto
and
Y.
Kuramoto
,
Chemical Turbulence
(
Springer
,
1984
).
26.
P.
Ashwin
,
S.
Coombes
, and
R.
Nicks
, “
Mathematical frameworks for oscillatory network dynamics in neuroscience
,”
J. Math. Neurosci.
6
,
2
(
2016
).
27.
C.
Bick
,
M.
Goodfellow
,
C. R.
Laing
, and
E. A.
Martens
, “
Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: A review
,”
J. Math. Neurosci.
10
,
9
(
2020
).
28.
Y.
Kuramoto
and
D.
Battogtokh
, “Coexistence of coherence and incoherence in nonlocally coupled phase oscillators,” arXiv:cond-mat/0210694 (2002).
29.
D. M.
Abrams
and
S. H.
Strogatz
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
,
174102
(
2004
).
30.
O. E.
Omel’chenko
, “
The mathematics behind chimera states
,”
Nonlinearity
31
,
R121
(
2018
).
31.
C. R.
Laing
, “
Chimeras in networks with purely local coupling
,”
Phys. Rev. E
92
,
050904
(
2015
).
32.
Z. G.
Nicolaou
,
D.
Eroglu
, and
A. E.
Motter
, “
Multifaceted dynamics of Janus oscillator networks
,”
Phys. Rev. X
9
,
011017
(
2019
).
33.
J.
Xie
,
E.
Knobloch
, and
H.-C.
Kao
, “
Multicluster and traveling chimera states in nonlocal phase-coupled oscillators
,”
Phys. Rev. E
90
,
022919
(
2014
).
34.
M.
Bataille-Gonzalez
,
M.
Clerc
,
E.
Knobloch
, and
O.
Omel’chenko
, “
Traveling spiral wave chimeras in coupled oscillator systems: Emergence, dynamics, and transitions
,”
New J. Phys.
25
,
103023
(
2023
).
35.
J.
Yang
,
B. A.
Malomed
,
D. J.
Kaup
, and
A.
Champneys
, “
Embedded solitons: A new type of solitary wave
,”
Math. Comput. Simul.
56
,
585
600
(
2001
).
36.
T.
Wagenknecht
and
A.
Champneys
, “
When gap solitons become embedded solitons: A generic unfolding
,”
Phys. D
177
,
50
70
(
2003
).
37.
B. C.
Ponedel
and
E.
Knobloch
, “
Gap solitons and forced snaking
,”
Phys. Rev. E
98
,
062215
(
2018
).
38.
N.
Pernet
,
P.
St-Jean
,
D. D.
Solnyshkov
,
G.
Malpuech
,
N.
Carlon Zambon
,
Q.
Fontaine
,
B.
Real
,
O.
Jamadi
,
A.
Lemaitre
,
M.
Morassi
et al., “
Gap solitons in a one-dimensional driven-dissipative topological lattice
,”
Nat. Phys.
18
,
678
684
(
2022
).
39.
R.
El-Ganainy
,
K. G.
Makris
,
M.
Khajavikhan
,
Z. H.
Musslimani
,
S.
Rotter
, and
D. N.
Christodoulides
, “
Non-Hermitian physics and PT symmetry
,”
Nat. Phys.
14
,
11
19
(
2018
).
40.
M.
Fruchart
,
R.
Hanai
,
P. B.
Littlewood
, and
V.
Vitelli
, “
Non-reciprocal phase transitions
,”
Nature
592
,
363
369
(
2021
).
41.
Z. G.
Nicolaou
,
D. J.
Case
,
E. B. V. D.
Wee
,
M. M.
Driscoll
, and
A. E.
Motter
, “
Heterogeneity-stabilized homogeneous states in driven media
,”
Nat. Commun.
12
,
4486
(
2021
).
42.
Z. G.
Nicolaou
and
A. E.
Motter
, “
Anharmonic classical time crystals: A coresonance pattern formation mechanism
,”
Phys. Rev. Res.
3
,
023106
(
2021
).
43.
E.
Doedel
,
H. B.
Keller
, and
J. P.
Kernevez
, “
Numerical analysis and control of bifurcation problems (I): Bifurcation in finite dimensions
,”
Int. J. Bifurc. Chaos
1
,
493
520
(
1991
).
44.
See our GitHub repository at https://github.com/znicolaou/snakingoscillators for the source code reproducing the results in this paper.
45.
M.
Golubitsky
,
I.
Stewart
, and
D. G.
Schaeffer
,
Singularities and Groups in Bifurcation Theory: Volume II
(
Springer Science & Business Media
,
2012
), Vol. 69.
46.
J.
Burke
and
E.
Knobloch
, “
Snakes and ladders: Localized states in the Swift–Hohenberg equation
,”
Phys. Lett. A
360
,
681
688
(
2007
).
47.
J. P.
Gaivão
and
V.
Gelfreich
, “
Splitting of separatrices for the Hamiltonian-Hopf bifurcation with the Swift–Hohenberg equation as an example
,”
Nonlinearity
24
,
677
(
2011
).
48.
E. J.
Doedel
, “
Auto: A program for the automatic bifurcation analysis of autonomous systems
,”
Congr. Numer.
30
,
25
93
(
1981
), available at https://cir.nii.ac.jp/crid/1571980073982050304.
49.
E.
Doedel
,
H. B.
Keller
, and
J. P.
Kernevez
, “
Numerical analysis and control of bifurcation problems (II): Bifurcation in infinite dimensions
,”
Int. J. Bifurc. Chaos
1
,
745
772
(
1991
).
50.
P. J.
Olver
,
Applications of Lie Groups to Differential Equations
(
Springer Science & Business Media
,
1993
), Vol. 107.
51.
T. F.
Fairgrieve
and
A. D.
Jepson
, “
OK Floquet multipliers
,”
SIAM J. Numer. Anal.
28
,
1446
1462
(
1991
).
52.
A.
Bergner
,
M.
Frasca
,
G.
Sciuto
,
A.
Buscarino
,
E. J.
Ngamga
,
L.
Fortuna
, and
J.
Kurths
, “
Remote synchronization in star networks
,”
Phys. Rev. E
85
,
026208
(
2012
).
53.
H.
Chaté
, “
Spatiotemporal intermittency regimes of the one-dimensional complex Ginzburg-Landau equation
,”
Nonlinearity
7
,
185
(
1994
).
54.
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
,
851
(
1993
).
55.
O.
Batiste
,
E.
Knobloch
,
I.
Mercader
, and
M.
Net
, “
Simulations of oscillatory binary fluid convection in large aspect ratio containers
,”
Phys. Rev. E
65
,
016303
(
2001
).
56.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
2002
).
57.
G.
Ansmann
,
K.
Lehnertz
, and
U.
Feudel
, “
Self-induced switchings between multiple space-time patterns on complex networks of excitable units
,”
Phys. Rev. X
6
,
011030
(
2016
).
58.
C.
Bick
, “
Heteroclinic switching between chimeras
,”
Phys. Rev. E
97
,
050201
(
2018
).
59.
Y.
Zhang
,
Z. G.
Nicolaou
,
J. D.
Hart
,
R.
Roy
, and
A. E.
Motter
, “
Critical switching in globally attractive chimeras
,”
Phys. Rev. X
10
,
011044
(
2020
).
60.
E. S.
Medeiros
,
O.
Omel’chenko
, and
U.
Feudel
, “Chimera states emerging from dynamical trapping in chaotic saddles,” arXiv:2307.06918 (2023).
61.
A. R.
Champneys
,
V.
Kirk
,
E.
Knobloch
,
B. E.
Oldeman
, and
J. D.
Rademacher
, “
Unfolding a tangent equilibrium-to-periodic heteroclinic cycle
,”
SIAM J. Appl. Dyn. Syst.
8
,
1261
1304
(
2009
).
62.
M.
Raja
,
A.
van Kan
,
B.
Foster
, and
E.
Knobloch
, “
Collisions of localized patterns in a nonvariational Swift-Hohenberg equation
,”
Phys. Rev. E
107
,
064214
(
2023
).
63.
B.
Sandstede
and
A.
Scheel
, “
Defects in oscillatory media: Toward a classification
,”
SIAM J. Appl. Dyn. Syst.
3
,
1
68
(
2004
).
You do not currently have access to this content.