Weak fault signals are often overwhelmed by strong noise or interference. The key issue in fault diagnosis is to accurately extract useful fault characteristics. Stochastic resonance is an important signal processing method that utilizes noise to enhance weak signals. In this paper, to address the issues of output saturation and imperfect optimization of potential structure models in classical bistable stochastic resonance (CBSR), we propose a piecewise asymmetric stochastic resonance system. A two-state model is used to theoretically derive the output signal-to-noise ratio (SNR) of the bistable system under harmonic excitations, which is compared with the SNR of CBSR to demonstrate the superiority of the method. The method is then applied to fault data. The results indicate that it can achieve a higher output SNR and higher spectral peaks at fault characteristic frequencies/orders, regardless of whether the system operates under fixed or time-varying speed conditions. This study provides new ideas and theoretical guidance for improving the accuracy and reliability of fault diagnosis technology.

1.
J.
Lin
and
L.
Qu
, “
Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis
,”
J. Sound Vib.
234
(
1
),
135
148
(
2000
).
2.
J.
Chen
,
Z.
Li
,
J.
Pan
,
G.
Chen
,
Y.
Zi
,
J.
Yuan
,
B.
Chen
, and
Z.
He
, “
Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review
,”
Mech. Syst. Signal Process.
70
,
1
35
(
2016
).
3.
S.
Yang
,
X.
Gu
,
Y.
Liu
,
R.
Hao
, and
S.
Li
, “
A general multi-objective optimized wavelet filter and its applications in fault diagnosis of wheelset bearings
,”
Mech. Syst. Signal Process.
145
,
106914
(
2020
).
4.
X.
Gu
,
S.
Yang
,
Y.
Liu
, and
R.
Hao
, “
A novel Pareto-based Bayesian approach on extension of the infogram for extracting repetitive transients
,”
Mech. Syst. Signal Process.
106
,
119
139
(
2018
).
5.
Q.
Gao
,
C.
Duan
,
H.
Fan
, and
Q.
Meng
, “
Rotating machine fault diagnosis using empirical mode decomposition
,”
Mech. Syst. Signal Process.
22
(
5
),
1072
1081
(
2008
).
6.
Z.
Feng
,
M.
Zuo
,
J.
Qu
,
T.
Tian
, and
Z.
Liu
, “
Joint amplitude and frequency demodulation analysis based on local mean decomposition for fault diagnosis of planetary gearboxes
,”
Mech. Syst. Signal Process.
40
(
1
),
56
75
(
2013
).
7.
W.
Jiang
,
Z.
Zheng
,
Y.
Zhu
, and
Y.
Li
, “
Demodulation for hydraulic pump fault signals based on local mean decomposition and improved adaptive multiscale morphology analysis
,”
Mech. Syst. Signal Process.
58
,
179
205
(
2015
).
8.
S.
Zhang
,
S.
Lu
,
Q.
He
, and
F.
Kong
, “
Time-varying singular value decomposition for periodic transient identification in bearing fault diagnosis
,”
J. Sound Vib.
379
,
213
231
(
2016
).
9.
M.
Kang
and
J.
Kim
, “
Singular value decomposition based feature extraction approaches for classifying faults of induction motors
,”
Mech. Syst. Signal Process.
41
(
1–2
),
348
356
(
2013
).
10.
X.
Zhao
and
B.
Ye
, “
Singular value decomposition packet and its application to extraction of weak fault feature
,”
Mech. Syst. Signal Process.
70
,
73
86
(
2016
).
11.
S.
Zhang
,
Y.
Wang
,
S.
He
, and
Z.
Jiang
, “
Bearing fault diagnosis based on variational mode decomposition and total variation denoising
,”
Meas. Sci. Technol.
27
(
7
),
075101
(
2016
).
12.
Y.
Wang
,
R.
Markert
,
J.
Xiang
, and
W.
Zheng
, “
Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system
,”
Mech. Syst. Signal Process.
60
,
243
251
(
2015
).
13.
X.
Gu
,
S.
Yang
,
Y.
Liu
, and
R.
Hao
, “
Rolling element bearing faults diagnosis based on kurtogram and frequency domain correlated kurtosis
,”
Meas. Sci. Technol.
27
(
12
),
125019
(
2016
).
14.
M.
Feldman
, “
Time-varying vibration decomposition and analysis based on the Hilbert transform
,”
J. Sound Vib.
295
(
3–5
),
518
530
(
2006
).
15.
G.
He
,
K.
Ding
, and
H.
Lin
, “
Fault feature extraction of rolling element bearings using sparse representation
,”
J. Sound Vib.
366
,
514
527
(
2016
).
16.
X.
Ding
and
Q.
He
, “
Time–frequency manifold sparse reconstruction: A novel method for bearing fault feature extraction
,”
Mech. Syst. Signal Process.
80
,
392
413
(
2016
).
17.
W.
Fan
,
G.
Cai
,
Z.
Zhu
,
C.
Shen
,
W.
Huang
, and
L.
Shang
, “
Sparse representation of transients in wavelet basis and its application in gearbox fault feature extraction
,”
Mech. Syst. Signal Process.
56
,
230
245
(
2015
).
18.
H.
Zhang
,
X.
Chen
,
Z.
Du
, and
R.
Yan
, “
Kurtosis based weighted sparse model with convex optimization technique for bearing fault diagnosis
,”
Mech. Syst. Signal Process.
80
,
349
376
(
2016
).
19.
R.
Benzi
,
A.
Sutera
, and
A.
Vulpiani
, “
The mechanism of stochastic resonance
,”
J. Phys. A: Math. Gen.
14
(
11
),
L453
(
1981
).
20.
B.
McNamara
,
K.
Wiesenfeld
, and
R.
Roy
, “
Observation of stochastic resonance in a ring laser
,”
Phys. Rev. Lett.
60
(
25
),
2626
(
1988
).
21.
A.
Hibbs
,
A.
Singsaas
,
E.
Jacobs
,
A.
Bulsara
,
J.
Bekkedahl
, and
F.
Moss
, “
Stochastic resonance in a superconducting loop with a Josephson junction
,”
J. Appl. Phys.
77
(
6
),
2582
2590
(
1995
).
22.
D.
Leonard
and
L.
Reichl
, “
Stochastic resonance in a chemical reaction
,”
Phys. Rev. E
49
(
2
),
1734
(
1994
).
23.
D.
Nozaki
,
D.
Mar
,
P.
Grigg
, and
J.
Collins
, “
Effects of colored noise on stochastic resonance in sensory neurons
,”
Phys. Rev. Lett.
82
(
11
),
2402
(
1999
).
24.
J.
Douglass
,
L.
Wilkens
,
E.
Pantazelou
, and
F.
Moss
, “
Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance
,”
Nature
365
(
6444
),
337
340
(
1993
).
25.
D.
Dai
and
Q.
He
, “
Multiscale noise tuning stochastic resonance enhances weak signal detection in a circuitry system
,”
Meas. Sci. Technol.
23
(
11
),
115001
(
2012
).
26.
D.
Dylov
and
J.
Fleischer
, “
Nonlinear self-filtering of noisy images via dynamical stochastic resonance
,”
Nat. Photonics
4
(
5
),
323
328
(
2010
).
27.
D.
Rousseau
and
F.
Chapeau-Blondeau
, “
Stochastic resonance and improvement by noise in optimal detection strategies
,”
Digit. Signal Process.
15
(
1
),
19
32
(
2005
).
28.
S.
Zozor
and
P.
Amblard
, “
On the use of stochastic resonance in sine detection
,”
Signal Process.
82
(
3
),
353
367
(
2002
).
29.
R.
Yan
,
R.
Gao
, and
X.
Chen
, “
Wavelets for fault diagnosis of rotary machines: A review with applications
,”
Signal Process.
96
,
1
15
(
2014
).
30.
Y.
Chen
,
Y.
Zhao
,
C.
He
,
S.
Ai
,
H.
Lei
,
L.
Tang
, and
D.
Fang
, “
Yield and failure theory for unidirectional polymer-matrix composites
,”
Compos. B: Eng.
164
,
612
619
(
2019
).
31.
Y.
Xu
,
J.
Li
,
J.
Feng
,
H.
Zhang
,
W.
Xu
, and
J.
Duan
, “
Lévy noise-induced stochastic resonance in a bistable system
,”
Eur. Phys. J. B
86
,
198
(
2013
).
32.
Z.
Wang
,
Y.
Li
,
Y.
Xu
,
T.
Kapitaniak
, and
J.
Kurths
, “
Coherence-resonance chimeras in coupled HR neurons with alpha-stable Lévy noise
,”
J. Stat. Mech.: Theory Exp.
2022
(
5
),
053501
.
33.
Z.
Wang
,
Y.
Xu
, and
H.
Yang
, “
Lévy noise induced stochastic resonance in an FHN model
,”
Sci. China Technol. Sci.
59
,
371
375
(
2016
).
34.
J.
Lindner
,
B.
Breen
,
M.
Wills
,
A.
Bulsara
, and
W.
Ditto
, “
Monostable array-enhanced stochastic resonance
,”
Phys. Rev. E
63
(
5
),
051107
(
2001
).
35.
S.
Lu
,
Q.
He
,
H.
Zhang
,
S.
Zhang
, and
F.
Kong
, “
Note: Signal amplification and filtering with a tristable stochastic resonance cantilever
,”
Rev. Sci. Instrum.
84
(
2
),
026110
(
2013
).
36.
Y.
Jin
,
H.
Wang
, and
P.
Xu
, “
Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback
,”
Chaos, Solitons Fractals
168
,
113099
(
2023
).
37.
P.
Xu
and
Y.
Jin
, “
Stochastic resonance in an asymmetric tristable system driven by correlated noises
,”
Appl. Math. Model.
77
,
408
425
(
2020
).
38.
Y.
Jin
,
P.
Xu
,
Y.
Li
,
J.
Ma
, and
Y.
Xu
, “
Stochastic resonance of multi-stable dynamical systems: A review
,”
Adv. Mech.
53
(
2
),
357
394
(
2023
).
39.
R.
Mei
,
Y.
Xu
,
Y.
Li
, and
J.
Kurths
, “
Characterizing stochastic resonance in a triple cavity
,”
Philos. Trans. R. Soc. A
379
(
2198
),
20200230
(
2021
).
40.
J.
Li
,
X.
Chen
, and
Z.
He
, “
Multi-stable stochastic resonance and its application research on mechanical fault diagnosis
,”
J. Sound Vib.
332
(
22
),
5999
6015
(
2013
).
41.
Y.
Jin
,
H.
Wang
,
P.
Xu
, and
W.
Xie
, “
Stochastic resonance of a multi-stable system and its application in bearing fault diagnosis
,”
Probab. Eng. Mech.
72
,
103418
(
2023
).
42.
S.
Lu
,
Q.
He
, and
F.
Kong
, “
Stochastic resonance with Woods–Saxon potential for rolling element bearing fault diagnosis
,”
Mech. Syst. Signal Process.
45
(
2
),
488
503
(
2014
).
43.
H.
Zhang
,
Q.
He
,
S.
Lu
, and
F.
Kong
, “
Stochastic resonance with a joint Woods-Saxon and Gaussian potential for bearing fault diagnosis
,”
Math. Probl. Eng.
2014
(
1
),
315901
.
44.
X.
Liu
,
H.
Liu
,
J.
Yang
,
G.
Litak
,
G.
Cheng
, and
S.
Han
, “
Improving the bearing fault diagnosis efficiency by the adaptive stochastic resonance in a new nonlinear system
,”
Mech. Syst. Signal Process.
96
,
58
76
(
2017
).
45.
J.
Zhang
,
D.
Huang
,
J.
Yang
,
H.
Liu
, and
X.
Liu
, “
Realizing the empirical mode decomposition by the adaptive stochastic resonance in a new periodical model and its application in bearing fault diagnosis
,”
J. Mech. Sci. Technol.
31
,
4599
4610
(
2017
).
46.
Z.
Li
,
X.
Liu
,
S.
Han
,
J.
Wang
, and
X.
Ren
, “
Fault diagnosis method and application based on unsaturated piecewise linear stochastic resonance
,”
Rev. Sci. Instrum.
90
(
6
),
065112
(
2019
).
47.
Y.
Xu
,
J.
Wu
,
H.-Q.
Zhang
, and
S.-J.
Ma
, “
Stochastic resonance phenomenon in an underdamped bistable system driven by weak asymmetric dichotomous noise
,”
Nonlinear Dyn.
70
(
1
),
531
539
(
2012
).
48.
T.
Gong
,
J.
Yang
,
Z.
Shan
, and
H.
Liu
, “
Research on rolling bearing fault diagnosis under strong noise background and variable speed working condition
,”
Ind. Mine Autom.
47
(
7
),
63
71
(
2021
).
49.
Y.
Leng
,
Y.
Leng
,
T.
Wang
, and
Y.
Guo
, “
Numerical analysis and engineering application of large parameter stochastic resonance
,”
J. Sound Vib.
292
(
3–5
),
788
801
(
2006
).
50.
L.
Gammaitoni
,
P.
Hänggi
,
P.
Jung
, and
F.
Marchesoni
, “
Stochastic resonance
,”
Rev. Mod. Phys.
70
(
1
),
223
(
1998
).
51.
J.
Casado-Pascual
,
J.
Gómez-Ordóñez
, and
M.
Morillo
, “
Stochastic resonance: Theory and numerics
,”
Chaos
15
(
2
),
26115
(
2005
).
52.
D.
Huang
,
J.
Yang
,
J.
Zhang
, and
H.
Liu
, “
An improved adaptive stochastic resonance method for improving the efficiency of bearing faults diagnosis
,”
Proc. Inst. Mech. Eng., C: J. Mech. Eng. Sci.
232
(
13
),
2352
2368
(
2018
).
53.
V.
Gandhimathi
,
K.
Murali
, and
S.
Rajasekar
, “
Stochastic resonance in overdamped two coupled anharmonic oscillators
,”
Phys. A
347
,
99
116
(
2005
).
54.
See http://csegroups.case.edu/bearingdatacenter/pages/download-data-file for information about the CWRU bearing data.
55.
H.
Huang
and
N.
Baddour
, “
Bearing vibration data collected under time-varying rotational speed conditions
,”
Data Br.
21
,
1745
1749
(
2018
).
56.
R.
Potter
and
M.
Gribler
, “
Computed order tracking obsoletes older methods
,”
SAE Trans.
98
,
1099
1103
(
1989
).
You do not currently have access to this content.