Intelligent agents collect and process information from their dynamically evolving neighborhood to efficiently navigate through it. However, agent-level intelligence does not guarantee that at the level of a collective; a common example is the jamming we observe in traffic flows. In this study, we ask: how and when do the interactions between intelligent agents translate to desirable or intelligent collective outcomes? To explore this question, we choose a collective consisting of two kinds of agents with opposing desired directions of movement. Agents in this collective are minimally intelligent: they possess only a single facet of intelligence, viz., memory, where the agents remember how well they were able to travel in their desired directions and make up for their non-optimal past. We find that dynamics due to the agent’s memory influences the collective, giving rise to diverse outcomes at the level of the group: from those that are undesirable to those that can be called “intelligent.” When memory is short term, local rearrangement of agents leads to the formation of symmetrically jammed arrangements that take longer to unjam. However, when agents remember across longer time-scales, their dynamics become sensitive to small differences in their movement history. This gives rise to heterogeneity in the movement that causes agents to unjam more readily and form lanes.

1.
T.
Vicsek
,
A.
Czirók
,
E.
Ben-Jacob
,
I.
Cohen
, and
O.
Shochet
, “
Novel type of phase transition in a system of self-driven particles
,”
Phys. Rev. Lett.
75
,
1226
1229
(
1995
).
2.
C. W.
Reynolds
, “
Flocks, herds and schools: A distributed behavioral model
,”
ACM SIGGRAPH Comp. Graph.
21
,
25
34
(
1987
).
3.
I.
Couzin
,
J.
Krause
,
R.
James
,
G.
Ruxton
, and
N.
Franks
, “
Collective memory and spatial sorting in animal groups
,”
J. Theor. Biol.
218
,
1
11
(
2002
).
4.
G.
Theraulaz
,
J.
Gautrais
,
S.
Camazine
, and
J.-L.
Deneubourg
, “
The formation of spatial patterns in social insects: From simple behaviours to complex structures
,”
Philos. Trans. Ser. A
361
,
1263
1282
(
2003
).
5.
D. J. T.
Sumpter
, “
The principles of collective animal behaviour
,”
Philos. Trans. R. Soc. B
361
,
5
22
(
2006
).
6.
J.
Jhawar
and
V.
Guttal
, “
noise-induced effects in collective dynamics and inferring local interactions from data: Inferring noise-induced states
,”
Philos. Trans. R. Soc. B
375
,
11
13
(
2020
).
7.
C. A.
Yates
,
R.
Erban
,
C.
Escudero
,
I. D.
Couzin
,
J.
Buhl
,
I. G.
Kevrekidis
,
P. K.
Maini
, and
D. J. T.
Sumpter
, “
Inherent noise can facilitate coherence in collective swarm motion
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
5464
9
(
2009
).
8.
L.
Lei
,
R.
Escobedo
,
C.
Sire
, and
G.
Theraulaz
, “
Computational and robotic modeling reveal parsimonious combinations of interactions between individuals in schooling fish
,”
PLoS Comput. Biol.
16
,
e1007194
(
2020
).
9.
V.
Jadhav
,
V.
Guttal
, and
D. R.
M
, “
Randomness in the choice of neighbours promotes cohesion in mobile animal groups
,”
R. Soc. Open Sci.
9
,
220124
(
2022
).
10.
M.
Isobe
,
T.
Adachi
, and
T.
Nagatani
, “
Experiment and simulation of pedestrian counter flow
,”
Physica A
336
,
638
650
(
2004
).
11.
T.
Kretz
,
A.
Grünebohm
,
M.
Kaufman
,
F.
Mazur
, and
M.
Schreckenberg
, “
Experimental study of pedestrian counterflow in a corridor
,”
J. Stat. Mech.
2006
,
P10001
(
2006
).
12.
C.
Feliciani
and
K.
Nishinari
, “
Empirical analysis of the lane formation process in bidirectional pedestrian flow
,”
Phys. Rev. E
94
,
032304
(
2016
).
13.
I.
Schmidt
,
T.
Collett
,
F.-X.
Dillier
, and
R.
Wehner
, “
How desert ants cope with enforced detours on their way home
,”
J. Compar. Physiol. A
171
,
285
288
(
1992
).
14.
M.
Moussaid
,
S.
Garnier
,
G.
Theraulaz
, and
D.
Helbing
, “
Collective information processing and pattern formation in swarms, flocks, and crowds
,”
Top. Cogn. Sci.
1
,
469
497
(
2009
).
15.
P.
Romanczuk
,
I. D.
Couzin
, and
L.
Schimansky-Geier
, “
Collective motion due to individual escape and pursuit response
,”
Phys. Rev. Lett.
102
,
1
4
(
2009
).
16.
M.
Papadopoulou
,
H.
Hildenbrandt
,
D. W.
Sankey
,
S. J.
Portugal
, and
C. K.
Hemelrijk
, “
Self-organization of collective escape in pigeon flocks
,”
PLoS Comput. Biol.
18
,
1
25
(
2022
).
17.
C. C.
Ioannou
,
V.
Guttal
, and
I. D.
Couzin
, “
Predatory fish select for coordinated
,”
Science
337
,
1212
1215
(
2012
).
18.
C. R.
Reid
,
M. J.
Lutz
,
S.
Powell
,
A. B.
Kao
,
I. D.
Couzin
, and
S.
Garnier
, “
Army ants dynamically adjust living bridges in response to a cost–benefit trade-off
,”
Proc. Natl. Acad. Sci. U.S.A.
112
,
201512241
(
2015
).
19.
C.
Detrain
and
J.
Deneubourg
, “
Self-organized structures in a superorganism: Do ants “behave” like molecules?
,”
Phys. Life Rev.
3
,
162
187
(
2006
).
20.
C. R.
Reid
and
T.
Latty
, “
Collective behaviour and swarm intelligence in slime moulds
,”
FEMS Microbiol. Rev.
40
,
798
806
(
2016
).
21.
T.
Tsuboi
and
N.
Yoshikawa
, “
Traffic flow analysis in Ahmedabad (India)
,”
Case Stud. Transport Policy
8
,
215
228
(
2020
).
22.
R.
Chauhan
,
P.
Kumar
,
S.
Arkatkar
,
A.
Dhamaniya
, and
P. K.
Sahu
, “
Examining deterministic and probabilistic capacity estimation methods under mixed traffic using empirical data
,”
Case Stud. Transport Policy
9
,
1888
1899
(
2021
).
23.
H.
Hornischer
,
S.
Herminghaus
, and
M. G.
Mazza
, “
Structural transition in the collective behavior of cognitive agents
,”
Sci. Rep.
9
,
12477
(
2019
).
24.
H. J.
Charlesworth
and
M. S.
Turner
, “
Intrinsically motivated collective motion
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
15362
15367
(
2019
).
25.
A. D.
Wissner-Gross
and
C. E.
Freer
, “
Causal entropic forces
,”
Phys. Rev. Lett.
110
,
1
5
(
2013
).
26.
R. P.
Mann
and
R.
Garnett
, “
The entropic basis of collective behaviour
,”
J. Roy. Soc. Interface
12
,
20150037
(
2015
).
27.
A.
Nabeel
and
D. R.
Masila
, “
Disentangling intrinsic motion from neighborhood effects in heterogeneous collective motion
,”
Chaos
32
,
063119
(
2022
).
28.
D.
Helbing
,
I. J.
Farkas
, and
T.
Vicsek
, “
Freezing by heating in a driven mesoscopic system
,”
Phys. Rev. Lett.
84
,
1240
1243
(
2000
).
29.
C.
Reichhardt
and
C. J.
Reichhardt
, “
Velocity force curves, laning, and jamming for oppositely driven disk systems
,”
Soft Matter
14
,
490
498
(
2018
).
30.
D. R.
Masila
and
A.
Nayak
, “Collective traffic of agents that remember,” paper presented at TGF 22, 2023.
31.
D.
Helbing
and
P.
Molnár
, “
Social force model for pedestrian dynamics
,”
Phys. Rev. E
51
,
4282
4286
(
1995
).
32.
X.
Yang
and
Q.
Wang
, “
Crowd hybrid model for pedestrian dynamic prediction in a corridor
,”
IEEE Access
7
,
95264
95273
(
2019
).
33.
J. C.
Moreno
,
M. L.
Rubio Puzzo
, and
W.
Paul
, “
Collective dynamics of pedestrians in a corridor: An approach combining social force and Vicsek models
,”
Phys. Rev. E
102
,
022307
(
2020
).
34.
J.
Chakrabarti
,
J.
Dzubiella
, and
H.
Löwen
, “
Dynamical instability in driven colloids
,”
Europhys. Lett.
61
,
415
421
(
2003
).
35.
T.
Vissers
,
A.
Wysocki
,
M.
Rex
,
H.
Löwen
,
C. P.
Royall
,
A.
Imhof
, and
A.
Van Blaaderen
, “
Lane formation in driven mixtures of oppositely charged colloids
,”
Soft Matter
7
,
2352
2356
(
2011
).
36.
X.
Jia
,
C.
Feliciani
,
D.
Yanagisawa
, and
K.
Nishinari
, “
Experimental study on the evading behavior of individual pedestrians when confronting with an obstacle in a corridor
,”
Physica A
531
,
121735
(
2019
).
37.
A.
Nicolas
,
M.
Kuperman
,
S.
Ibañez
,
S.
Bouzat
, and
C.
Appert-Rolland
, “
Mechanical response of dense pedestrian crowds to the crossing of intruders
,”
Sci. Rep.
9
,
105
(
2019
).
38.
M. J.
Seitz
,
N. W.
Bode
, and
G.
Köster
, “
How cognitive heuristics can explain social interactions in spatial movement
,”
J. Roy. Soc. Interface
13
,
20160439
(
2016
).
39.
D.
Helbing
,
I.
Farkas
, and
T.
Vicsek
, “
Simulating dynamical features of escape panic
,”
Nature
407
,
487
490
(
2000
).
40.
J. M.
Pastor
,
A.
Garcimartín
,
P. A.
Gago
,
J. P.
Peralta
,
C.
Martín-Gómez
,
L. M.
Ferrer
,
D.
Maza
,
D. R.
Parisi
,
L. A.
Pugnaloni
, and
I.
Zuriguel
, “
Experimental proof of faster-is-slower in systems of frictional particles flowing through constrictions
,”
Phys. Rev. E
92
,
062817
(
2015
).
41.
A.
Garcimartín
,
I.
Zuriguel
,
J. M.
Pastor
,
C.
Martín-Gómez
, and
D. R.
Parisi
, “
Experimental evidence of the “faster is slower” effect
,”
Transport. Res. Proc.
2
,
760
767
(
2014
).
42.
W. B.
Krantz
,
Scaling Analysis in Modeling Transport and Reaction Processes: A Systematic Approach to Model Building and the Art of Approximation
(
Wiley-Interscience
,
2007
), p.
547
.
You do not currently have access to this content.