The spatiotemporal organization of networks of dynamical units can break down resulting in diseases (e.g., in the brain) or large-scale malfunctions (e.g., power grid blackouts). Re-establishment of function then requires identification of the optimal intervention site from which the network behavior is most efficiently re-stabilized. Here, we consider one such scenario with a network of units with oscillatory dynamics, which can be suppressed by sufficiently strong coupling and stabilizing a single unit, i.e., pinning control. We analyze the stability of the network with hyperbolas in the control gain vs coupling strength state space and identify the most influential node (MIN) as the node that requires the weakest coupling to stabilize the network in the limit of very strong control gain. A computationally efficient method, based on the Moore–Penrose pseudoinverse of the network Laplacian matrix, was found to be efficient in identifying the MIN. In addition, we have found that in some networks, the MIN relocates when the control gain is changed, and thus, different nodes are the most influential ones for weakly and strongly coupled networks. A control theoretic measure is proposed to identify networks with unique or relocating MINs. We have identified real-world networks with relocating MINs, such as social and power grid networks. The results were confirmed in experiments with networks of chemical reactions, where oscillations in the networks were effectively suppressed through the pinning of a single reaction site determined by the computational method.

1.
D.-B. S. for Parkinson’s Disease Study Group
, “
Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease
,”
N. Engl. J. Med.
345
,
956
963
(
2001
).
2.
M. J.
Schaus
and
J.
Moehlis
, “On the response of neurons to sinusoidal current stimuli: Phase response curves and phase-locking,” in Proceedings of the 45th IEEE Conference on Decision and Control (IEEE, 2006), pp. 2376–2381.
3.
A. M.
Amani
,
N.
Gaeini
,
M.
Jalili
, and
X.
Yu
, “
Which generation unit should be selected as control leader in secondary frequency control of microgrids?
,”
IEEE J. Emerg. Sel. Top. Circuits Syst.
7
,
393
402
(
2017
).
4.
M.
Porfiri
and
M.
Di Bernardo
, “
Criteria for global pinning-controllability of complex networks
,”
Automatica
44
,
3100
3106
(
2008
).
5.
S.
Ching
,
E. N.
Brown
, and
M. A.
Kramer
, “
Distributed control in a mean-field cortical network model: Implications for seizure suppression
,”
Phys. Rev. E
86
,
021920
(
2012
).
6.
B. J.
Gluckman
,
H.
Nguyen
,
S. L.
Weinstein
, and
S. J.
Schiff
, “
Adaptive electric field control of epileptic seizures
,”
J. Neurosci.
21
,
590
600
(
2001
).
7.
R.
Mikkelsen
,
M.
Andreasen
, and
S.
Nedergaard
, “
Suppression of epileptiform activity by a single short-duration electric field in rat hippocampus in vitro
,”
J. Neurophysiol.
109
,
2720
2731
(
2013
).
8.
E. F.
Du Toit
and
I. K.
Craig
, “
Selective pinning control of the average disease transmissibility in an HIV contact network
,”
Phys. Rev. E
92
,
012810
(
2015
).
9.
X.
Li
,
X.
Wang
, and
G.
Chen
, “
Pinning a complex dynamical network to its equilibrium
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
51
,
2074
2087
(
2004
).
10.
W.
Yu
,
G.
Chen
,
J.
Lu
, and
J.
Kurths
, “
Synchronization via pinning control on general complex networks
,”
SIAM J. Control Optim.
51
,
1395
1416
(
2013
).
11.
X.
Wang
and
H.
Su
, “
Pinning control of complex networked systems: A decade after and beyond
,”
Annu. Rev. Control
38
,
103
111
(
2014
).
12.
Y.
Tang
,
H.
Gao
,
J.
Kurths
, and
J.-A.
Fang
, “
Evolutionary pinning control and its application in UAV coordination
,”
IEEE Trans. Ind. Inform.
8
,
828
838
(
2012
).
13.
Y.
Tang
,
H.
Gao
,
W.
Zou
, and
J.
Kurths
, “
Identifying controlling nodes in neuronal networks in different scales
,”
PLoS One
7
,
e41375
(
2012
).
14.
F.
Chen
,
Z.
Chen
,
L.
Xiang
,
Z.
Liu
, and
Z.
Yuan
, “
Reaching a consensus via pinning control
,”
Automatica
45
,
1215
1220
(
2009
).
15.
P.
DeLellis
,
M.
di Bernardo
, and
G.
Russo
, “
On quad, Lipschitz, and contracting vector fields for consensus and synchronization of networks
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
58
,
576
583
(
2010
).
16.
W.
Zou
,
D. V.
Senthilkumar
,
R.
Nagao
,
I. Z.
Kiss
,
Y.
Tang
,
A.
Koseska
,
J.
Duan
, and
J.
Kurths
, “
Restoration of rhythmicity in diffusively coupled dynamical networks
,”
Nat. Commun.
6
,
7709
(
2015
).
17.
R.
Nagao
,
W.
Zou
,
J.
Kurths
, and
I. Z.
Kiss
, “
Restoring oscillatory behavior from amplitude death with anti-phase synchronization patterns in networks of electrochemical oscillations
,”
Chaos
26
,
094808
(
2016
).
18.
R.
Phogat
,
I.
Tiwari
,
P.
Kumar
,
M.
Rivera
, and
P.
Parmananda
, “
Cessation of oscillations in a chemo-mechanical oscillator
,”
Eur. Phys. J. B
91
,
111
(
2018
).
19.
J. F.
Totz
,
J.
Rode
,
M. R.
Tinsley
,
K.
Showalter
, and
H.
Engel
, “
Spiral wave chimera states in large populations of coupled chemical oscillators
,”
Nat. Phys.
14
,
282
285
(
2018
).
20.
M.
Jalili
,
O. A.
Sichani
, and
X.
Yu
, “
Optimal pinning controllability of complex networks: Dependence on network structure
,”
Phys. Rev. E
91
,
012803
(
2015
).
21.
A. M.
Amani
,
M.
Jalili
,
X.
Yu
, and
L.
Stone
, “
Controllability of complex networks: Choosing the best driver set
,”
Phys. Rev. E
98
,
030302
(
2018
).
22.
R. E.
Mirollo
and
S. H.
Strogatz
, “
Amplitude death in an array of limit-cycle oscillators
,”
J. Stat. Phys.
60
,
245
262
(
1990
).
23.
A.
Prasad
,
M.
Dhamala
,
B. M.
Adhikari
, and
R.
Ramaswamy
, “
Amplitude death in nonlinear oscillators with nonlinear coupling
,”
Phys. Rev. E
81
,
027201
(
2010
).
24.
C.
Hai-Ling
and
Y.
Jun-Zhong
, “
Transition to amplitude death in coupled system with small number of nonlinear oscillators
,”
Commun. Theor. Phys.
51
,
460
(
2009
).
25.
Y.
Tang
,
H.
Gao
, and
J.
Kurths
, “
Distributed robust synchronization of dynamical networks with stochastic coupling
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
61
,
1508
1519
(
2013
).
26.
A.
Hamdan
and
A.
Elabdalla
, “
Geometric measures of modal controllability and observability of power system models
,”
Electr. Power Syst. Res.
15
,
147
155
(
1988
).
27.
B.
Porter
and
R.
Crosslet
,
Modal control theory and applications
(
Taylor & Francis
,
London
,
1972
).
28.
M.
Tarokh
, “
Measures for controllability, observability and fixed modes
,”
IEEE Trans. Autom. Control
37
,
1268
1273
(
1992
).
29.
W. L.
Brogan
,
Modern Control Theory
(
Pearson Education India
,
1991
).
30.
H. K.
Khalil
,
Nonlinear Systems
(
Prentice Hall
,
Upper Saddle River, NJ
,
2002
), Vol. 3.
31.
M. H.
Hayes
,
Statistical Digital Signal Processing and Modeling
(
John Wiley & Sons
,
2009
).
32.
R.
Albert
and
A.-L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
(
2002
).
33.
P.
Erdős
and
A.
Rényi
, “
On the evolution of random graphs
,”
Publ. Math. Inst. Hung. Acad. Sci. A
5
,
17
61
(
1960
).
34.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of a small-world networks
,”
Nature
393
,
440
(
1998
).
35.
J. J.
Molitierno
,
Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs
(
Chapman & Hall/CRC
,
2016
).
36.
J.
Kunegis
, “KONECT: The Koblenz network collection,” in Proceedings of the 22nd International Conference on World Wide Web (ACM, 2013), pp. 1343–1350.
37.
M.
Wickramasinghe
and
I. Z.
Kiss
, “
Spatially organized dynamical states in chemical oscillator networks: Synchronization, dynamical differentiation, and chimera patterns
,”
PLoS One
8
,
e80586
(
2013
).
38.
I. Z.
Kiss
,
Z.
Kazsu
, and
V.
Gáspár
, “
Tracking unstable steady states and periodic orbits of oscillatory and chaotic electrochemical systems using delayed feedback control
,”
Chaos
16
,
033109
(
2006
).
39.
D.
Chen
,
L.
,
M.-S.
Shang
,
Y.-C.
Zhang
, and
T.
Zhou
, “
Identifying influential nodes in complex networks
,”
Physica A
391
,
1777
1787
(
2012
).
40.
M.
Kitsak
,
L. K.
Gallos
,
S.
Havlin
,
F.
Liljeros
,
L.
Muchnik
,
H. E.
Stanley
, and
H. A.
Makse
, “
Identification of influential spreaders in complex networks
,”
Nat. Phys.
6
,
888
(
2010
).
41.
L.
Hébert-Dufresne
,
A.
Allard
,
J.-G.
Young
, and
L. J.
Dubé
, “
Global efficiency of local immunization on complex networks
,”
Sci. Rep.
3
,
2171
(
2013
).
42.
D.
Postnov
,
D.
Postnov
,
D.
Marsh
,
N.-H.
Holstein-Rathlou
, and
O.
Sosnovtseva
, “
Dynamics of nephron-vascular network
,”
Bull. Math. Biol.
74
,
2820
2841
(
2012
).
43.
A.
Dekker
,
B.
Phelps
,
B.
Dijkman
,
T.
van Der Nagel
,
F.
van Der Veen
,
G.
Geskes
, and
J.
Maessen
, “
Epicardial left ventricular lead placement for cardiac resynchronization therapy: Optimal pace site selection with pressure-volume loops
,”
J. Thorac. Cardiovasc. Surg.
127
,
1641
1647
(
2004
).
44.
J. P.
Sun
,
E.
Chinchoy
,
E.
Donal
,
Z. B.
Popović
,
G.
Perlic
,
C. R.
Asher
,
N. L.
Greenberg
,
R. A.
Grimm
,
B. L.
Wilkoff
, and
J. D.
Thomas
, “
Evaluation of ventricular synchrony using novel Doppler echocardiographic indices in patients with heart failure receiving cardiac resynchronization therapy
,”
J. Am. Soc. Echocardiogr.
17
,
845
850
(
2004
).
45.
S. H.
Strogatz
,
C. M.
Marcus
,
R. M.
Westervelt
, and
R. E.
Mirollo
, “
Collective dynamics of coupled oscillators with random pinning
,”
Physica D
36
,
23
50
(
1989
).
46.
G. K.
Sar
,
D.
Ghosh
, and
K.
O’Keeffe
, “
Pinning in a system of swarmalators
,”
Phys. Rev. E
107
,
024215
(
2023
).

Supplementary Material

You do not currently have access to this content.