This work studies the SIS model extended by fractional and fractal derivatives. We obtain explicit solutions for the standard and fractal formulations; for the fractional case, we study numerical solutions. As a real data example, we consider the Brazilian syphilis data from 2011 to 2021. We fit the data by considering the three variations of the model. Our fit suggests a recovery period of 11.6 days and a reproduction ratio ( R 0) equal to 6.5. By calculating the correlation coefficient ( r) between the real data and the theoretical points, our results suggest that the fractal model presents a higher r compared to the standard or fractional case. The fractal formulation is improved when two different fractal orders with distinguishing weights are considered. This modification in the model provides a better description of the data and improves the correlation coefficient.

1.
W. O.
Kermack
and
A. G.
McKendrick
, “
A contribution to the mathematical theory of epidemics
,”
Proc. R. Soc. London A
115
,
700
721
(
1927
).
2.
M. J.
Keeling
and
P.
Rohani
,
Modeling Infectious Diseases in Humans and Animals
,
1st ed.
(
Princeton University Press
,
Princeton
,
2008
).
3.
O. N.
Bjørnstad
,
Epidemics: Models and Data Using R
,
1st ed.
(
Springer
,
Cham
,
2018
).
4.
A.
Batista
,
S.
de Souza
,
K.
Iarosz
,
A.
de Almeida
,
J.
Szezech, Jr.
,
E.
Gabrick
,
M.
Mugnaine
,
G.
dos Santos
, and
I.
Caldas
, “
Simulation of deterministic compartmental models for infectious diseases dynamics
,”
Rev. Bras. Ensino Fís.
43
,
e20210171
(
2021
).
5.
L.
Allen
, “
Some discrete-time SI, SIR, and SIS epidemic models
,”
Math. Biosci.
124
,
83
105
(
1994
).
6.
A.
Gray
,
D.
Greenhalgh
,
L.
Hu
,
X.
Mao
, and
J.
Pan
, “
A stochastic differential equation SIS epidemic model
,”
SIAM J. Appl. Math.
71
,
876
902
(
2011
).
7.
I.
Cooper
,
A.
Mondal
, and
C. G.
Antonopoulos
, “
A SIR model assumption for the spread of COVID-19 in different communities
,”
Chaos Soliton. Fract.
139
,
110057
(
2020
).
8.
M.
Aguiar
,
B.
Kooi
, and
N.
Stollenwerk
, “
Epidemiology of dengue fever: A model with temporary cross-immunity and possible secondary infection shows bifurcations and chaotic behaviour in wide parameter regions
,”
Math. Model. Nat. Phenom.
3
,
48
70
(
2008
).
9.
E. L.
Brugnago
,
R. M.
da Silva
,
C.
Manchein
, and
M. W.
Beim
, “
How relevant is the decision of containment measures against COVID-19 applied ahead of time?
,”
Chaos Soliton. Fract.
140
,
110164
(
2020
).
10.
M.
Mugnaine
,
E. C.
Gabrick
,
P. R.
Protachevicz
,
K. C.
Iarosz
,
S. L. T.
de Souza
,
A. C. L.
Almeida
,
A. M.
Batista
,
I. L.
Caldas
,
J. D.
Szezech, Jr.
, and
R. L.
Viana
, “
Control attenuation and temporary immunity in a cellular automata SEIR epidemic model
,”
Chaos Soliton. Fract.
155
,
111784
(
2022
).
11.
H. W.
Hethcote
, “
The mathematics of infectious diseases
,”
SIAM Rev.
42
,
599
653
(
2000
).
12.
A.
Lajmanovich
and
J.
Yorke
, “
A deterministic model for gonorrhea in a nonhomogeneous population
,”
Math. Biosci.
28
,
221
236
(
1976
).
13.
C.
Manchein
,
E. L.
Brugnago
,
R. M.
da Silva
,
C. F. O.
Mendes
, and
M. W.
Beims
, “
Strong correlations between power-law growth of COVID-19 in four continents and the inefficiency of soft quarantine strategies
,”
Chaos
30
,
041102
(
2020
).
14.
N.
Dalal
,
D.
Greenhalgh
, and
X.
Mao
, “
A stochastic model for internal HIV dynamics
,”
J. Math. Anal. Appl.
341
,
1084
1101
(
2008
).
15.
J.
Dushoff
,
J. B.
Plotkin
,
S. A.
Levin
, and
D. J. D.
Earn
, “
Dynamical resonance can account for seasonality of influenza epidemics
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
16915
16916
(
2004
).
16.
M.
Aguiar
,
N.
Stollenwerk
, and
B. W.
Kooi
, “
Torus bifurcations, isolas and chaotic attractors in a simple dengue fever model with ADE and temporary cross immunity
,”
Int. J. Comp. Math.
86
,
1867
1877
(
2009
).
17.
M.
Amaku
,
D. T.
Covas
,
F. A. B.
Coutinho
,
R. S. A.
Neto
,
C.
Struchiner
,
A.
Wilder-Smith
, and
E.
Massad
, “
Modelling the test, trace and quarantine strategy to control the COVID-19 epidemic in the state of São Paulo, Brazil
,”
Inf. Dis. Model.
6
,
46
55
(
2021
).
18.
S. V.
Scarpino
and
G.
Petri
, “
On the predictability of infectious disease outbreaks
,”
Nat. Comm.
10
,
898
(
2019
).
19.
L. F.
Olsen
and
W. M.
Schaffer
, “
Chaos versus noisy periodicity: Alternative hypotheses for childhood epidemics
,”
Science
249
,
499
504
(
1990
).
20.
M.
Keeling
and
B.
Grenfell
, “
Stochastic dynamics and a power law for measles variability
,”
Philos. Trans. R. Soc. Lond. B
354
,
769
776
(
1999
).
21.
S.
Altizer
,
A.
Dobson
,
P.
Hosseini
,
P.
Hudson
,
M.
Pascual
, and
P.
Rohani
, “
Seasonality and the dynamics of infectious diseases
,”
Eco. Lett.
9
,
467
484
(
2006
).
22.
J. A.
Galvis
,
C. A.
Corzo
,
J. M.
Prada
, and
G.
Machado
, “
Modeling between-farm transmission dynamics of porcine epidemic diarrhea virus: Characterizing the dominant transmission routes
,”
Prev. Vet. Med.
208
,
105759
(
2022
).
23.
G.
Machado
,
T. S.
Farthing
,
M.
Andraud
,
F. P. N.
Lopes
, and
C.
Lanzas
, “
Modelling the role of mortality-based response triggers on the effectiveness of African swine fever control strategies
,”
Transboundary Emerging Dis.
69
,
e532
e546
(
2022
).
24.
O. N.
Bjornstad
,
K.
Shea
,
M.
Krzywinski
, and
N.
Altman
, “
The SEIRS model for infectious disease dynamics
,”
Nat. Meth.
17
,
557
558
(
2020
).
25.
K.
Shea
,
O. N.
Bjornstad
,
M.
Krzywinski
, and
N.
Altman
, “
Uncertainty and the management of epidemics
,”
Nat. Meth.
17
,
867
868
(
2020
).
26.
O. N.
Bjornstad
,
K.
Shea
,
M.
Krzywinski
, and
N.
Altman
, “
Modeling infectious epidemics
,”
Nat. Meth.
17
,
455
456
(
2020
).
27.
E. C.
Gabrick
,
P. R.
Protachevicz
,
A. M.
Batista
,
K. C.
Iarosz
,
S. L. T.
de Souza
,
A. C. L.
Almeida
,
J. D.
Szezech, Jr.
,
M.
Mugnaine
, and
I. L.
Caldas
, “
Effect of two vaccine doses in the SEIR epidemic model using a stochastic cellular automaton
,”
Physica A
597
,
127258
(
2022
).
28.
M.
Aguiar
,
S.
Ballesteros
,
B. W.
Kooi
, and
N.
Stollenwerk
, “
The role of seasonality and import in a minimalistic multi-strain dengue model capturing differences between primary and secondary infections: Complex dynamics and its implications for data analysis
,”
J. Theor. Biol.
289
,
181
196
(
2011
).
29.
E. C.
Gabrick
,
E.
Sayari
,
P. R.
Protachevicz
,
J. D.
Szezech, Jr.
,
K. C.
Iarosz
,
S. L. T.
de Souza
,
A. C. L.
Almeida
,
R. L.
Viana
,
I. L.
Caldas
, and
A. M.
Batista
, “
Unpredictability in seasonal infectious diseases spread
,”
Chaos Soliton. Fract.
166
,
113001
(
2023
).
30.
S.
Ansari
,
M.
Anvari
,
O.
Pfeffer
,
N.
Molkenthin
,
M. R.
Moosavi
,
F.
Hellmann
,
J.
Heitzis
, and
J.
Kurths
, “
Moving the epidemic tipping point through topologically targeted social distancing
,”
Eur. Phys. J. Spec. Top.
230
,
3273
3280
(
2021
).
31.
Z. G.
Guo
,
L. P.
Song
,
G. Q.
Sun
,
C.
Li
, and
Z.
Jin
, “
Pattern dynamics of an SIS epidemic model with nonlocal delay
,”
Int. J. Bifurcation Chaos
29
,
1950027
(
2019
).
32.
R. M.
Anderson
and
R. M.
May
,
Infectious Diseases of Humans: Dynamics and Control
(
Oxford University Press
,
Oxford
,
1991
).
33.
H.
El-Saka
, “
The fractional-order SIS epidemic model with variable population size
,”
J. Egypt. Math. Soc.
22
,
50
54
(
2014
).
34.
Z.
Dian
,
Y.
Sun
,
G.
Zhang
,
Y.
Xu
,
X.
Fan
,
X.
Yang
,
Q.
Pan
,
M.
Peppelenbosch
, and
Z.
Miao
, “
Rotavirus-related systemic diseases: Clinical manifestation, evidence and pathogenesis
,”
Crit. Rev. Micro.
47
,
580
595
(
2021
).
35.
W.
Lynn
and
S.
Lightman
, “
Syphilis and HIV: A dangerous combination
,”
Lancet Inf. Dis.
4
,
456
466
(
2004
).
36.
M.
Ghosh
,
P.
Chandra
,
P.
Sinha
, and
J.
Shukla
, “
Modelling the spread of bacterial infectious disease with environmental effect in a logistically growing human population
,”
Nonlinear Anal.: Real World Appl.
7
,
341–363
(
2006
).
37.
X.
Feng
,
L.
Liu
,
S.
Tang
, and
X.
Huo
, “
Stability and bifurcation analysis of a two-patch SIS model on nosocomial infections
,”
Appl. Math. Lett.
102
,
106097
(
2020
).
38.
D.
Pang
and
Y.
Xiao
, “
The SIS model with diffusion of virus in the environment
,”
Math. Biosci. Eng.
16
,
2852
2874
(
2019
).
39.
A.
Misra
,
A.
Sharma
, and
J.
Shulka
, “
Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases
,”
Math. Comp. Model.
53
,
1221
1228
(
2011
).
40.
X.
Wu
,
X.
Zhou
,
Y.
Chen
,
K.
Zhai
,
R.
Sun
,
G. L. Y.
Lin
,
Y.
Li
,
C.
Yang
, and
H.
Zou
, “
The impact of COVID-19 lockdown on cases of and deaths from AIDS, gonorrhea, syphilis, hepatitis B, and hepatitis C: Interrupted time series analysis
,”
JMIR Public Health Surveill
9
,
e40591
(
2023
).
41.
H. W.
Hethcote
and
J. A.
Yorke
,
Gonorrhea Transmission Dynamics and Control
,
1st ed.
(
Springer
,
Berlin
,
1984
).
42.
H. W.
Hethcote
and
P.
van den Driessche
, “
An SIS epidemic model with variable population size and a delay
,”
J. Math. Biol.
34
,
177
194
(
1995
).
43.
A.
Gray
,
D.
Greenhalgh
,
X.
Mao
, and
J.
Pan
, “
The SIS epidemic model with Markovian switching
,”
J. Math. Anal. Appl.
394
,
496
516
(
2012
).
44.
D.
Gao
and
S.
Ruan
, “
An SIS patch model with variable transmission coefficients
,”
Math. Biosci.
232
,
110
115
(
2011
).
45.
X.
Sun
and
R.
Chui
, “
Analysis on a diffusive SIS epidemic model with saturated incidence rate and linear source in a heterogeneous environment
,”
J. Math. Anal. Appl.
490
,
124212
(
2020
).
46.
J.
Ge
,
C.
Lei
, and
Z.
Lin
, “
Reproduction numbers and the expanding fronts for a diffusion–advection SIS model in heterogeneous time-periodic environment
,”
Nonlinear Anal.: Real World Appl.
33
,
100
120
(
2017
).
47.
R.
Cui
and
Y.
Lou
, “
A spatial SIS model in advective heterogeneous environments
,”
J. Differ. Equ.
261
,
3305
3343
(
2016
).
48.
Y.
Cai
,
S.
Yan
,
H.
Wang
,
X.
Lian
, and
W.
Wang
, “
Spatiotemporal dynamics in a reaction–diffusion epidemic model with a time-delay in transmission
,”
Int. J. Bifurcation Chaos
25
,
1550099
(
2015
).
49.
Z.
Wu
,
Y.
Cai
,
Z.
Wang
, and
W.
Wang
, “
Global stability of a fractional order SIS epidemic model
,”
J. Differ. Equ.
352
,
221
248
(
2023
).
50.
N.
Liu
,
J.
Fang
,
W.
Deng
, and
J. W.
Sun
, “
Stability analysis of a fractional-order SIS model on complex networks with linear treatment function
,”
Adv. Differ. Equ.
2019
,
327
(
2019
).
51.
M.
Hassouna
,
A.
Ouhadan
, and
E. E.
Kinani
, “
On the solution of fractional order SIS epidemic model
,”
Chaos Soliton. Fract.
117
,
168
174
(
2018
).
52.
C.
Balzotti
,
M.
D’Ovidio
, and
P.
Loreti
, “
Fractional SIS epidemic models
,”
Fractal Fract.
4
,
44
(
2020
).
53.
C.
Balzotti
,
M.
D’Ovidio
,
A. C.
Lai
, and
P.
Loreti
, “
Effects of fractional derivatives with different orders in SIS epidemic models
,”
Computation
9
,
89
(
2021
).
54.
C.
Xia
,
S.
Sun
,
F.
Rao
,
J.
Sun
,
J.
Wang
, and
Z.
Chen
, “
SIS model of epidemic spreading on dynamical networks with community
,”
Front. Comput. Sci. China
3
,
361
365
(
2009
).
55.
S.
Abuasad
,
A.
Yildirim
,
I.
Hashim
,
S. A. A.
Karim
, and
J.
Gómez-Aguilar
, “
Fractional multi-step differential transformed method for approximating a fractional stochastic SIS epidemic model with imperfect vaccination
,”
Int. J. Environ. Res. Public Health
16
,
973
(
2019
).
56.
M. T.
Hoang
,
Z. U. A.
Zafar
, and
T. K. Q.
Ngo
, “
Dynamics and numerical approximations for a fractional-order SIS epidemic model with saturating contact rate
,”
Comp. Appl. Math.
39
,
227
(
2020
).
57.
N.
Liu
,
Y.
Li
,
J.
Sun
,
J.
Fang
, and
P.
Liu
, “
Epidemic dynamics of a fractional-order SIS infectious network model
,”
Discrete Dyn. Nat. Soc.
2021
,
5518436
.
58.
L. R.
Evangelista
and
E. K.
Lenzi
,
Fractional Diffusion Equations and Anomalous Diffusion
(
Cambridge University Press
,
2018
).
59.
R.
Metzler
and
J.
Klafter
, “
The random walk’s guide to anomalous diffusion: A fractional dynamics approach
,”
Phys. Rep.
339
,
1
77
(
2000
).
60.
L. R.
Evangelista
and
E. K.
Lenzi
,
An Introduction to Anomalous Diffusion and Relaxation
(
Springer Nature
,
2023
).
61.
V. V.
Uchaikin
and
R. T.
Sibatov
,
Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems
(
World Scientific Publishing Company
,
2012
).
62.
G.
Zaslavsky
, “
Chaos, fractional kinetics, and anomalous transport
,”
Phys. Rep.
371
,
461
580
(
2002
).
63.
E. K.
Lenzi
,
H. V.
Ribeiro
,
M. K. L.
L. R. Evangelista
, and
R. L.
Magin
, “
Fractional diffusion with geometric constraints: Application to signal decay in magnetic resonance imaging (MRI)
,”
Mathematics
10
,
389
(
2022
).
64.
R.
Magin
,
H.
Karani
,
S.
Wang
, and
Y.
Liang
, “
Fractional order complexity model of the diffusion signal decay in MRI
,”
Mathematics
7
,
348
(
2019
).
65.
G.
Barbero
,
L. R.
Evangelista
, and
E. K.
Lenzi
, “
Time-fractional approach to the electrochemical impedance: The displacement current
,”
J. Electr. Chem.
920
,
116588
(
2022
).
66.
J.
Bisquert
and
A.
Compte
, “
Theory of the electrochemical impedance of anomalous diffusion
,”
J. Electr. Chem.
499
,
112
120
(
2001
).
67.
C. N.
Angstmann
,
A. M.
Erickson
,
B. I.
Henry
,
A. V.
McGann
,
J. M.
Murray
, and
J. A.
Nichols
, “
A general framework for fractional order compartment models
,”
SIAM Rev.
63
,
375
392
(
2021
).
68.
C. N.
Angstmann
,
B. I.
Henry
, and
A. V.
McGann
, “
A fractional-order infectivity SIR model
,”
Physica A
452
,
86
93
(
2016
).
69.
N.
Sene
, “
SIR epidemic model with Mittag–Leffler fractional derivative
,”
Chaos, Solitons Fractals
137
,
109833
(
2020
).
70.
A.
Taghvaei
,
T. T.
Georgiou
,
L.
Norton
, and
A.
Tannenbaum
, “
Fractional SIR epidemiological models
,”
Sci. Rep.
10
,
20882
(
2020
).
71.
R.
Almeida
, “
Analysis of a fractional SEIR model with treatment
,”
Appl. Math. Lett.
84
,
56
62
(
2018
).
72.
Z.
Ahmad
,
M.
Arif
,
F.
Ali
,
I.
Khan
, and
K. S.
Nisar
, “
A report on COVID-19 epidemic in Pakistan using SEIR fractional model
,”
Sci. Rep.
10
,
22268
(
2020
).
73.
M.
Cai
,
G. E.
Karniadakis
, and
C.
Li
, “
Fractional SEIR model and data-driven predictions of COVID-19 dynamics of omicron variant
,”
Chaos
32
,
071101
(
2022
).
74.
L.
Li
,
C. H.
Wang
,
S. F.
Wang
,
M. T.
Li
,
L.
Yakob
,
B.
Cazelles
,
Z.
Jin
, and
W. Y.
Zhang
, “
Hemorrhagic fever with renal syndrome in China: Mechanisms on two distinct annual peaks and control measures
,”
Int. J. Biomath.
11
,
1850030
(
2018
).
75.
M.
Arif
,
P.
Kumam
,
W.
Kumam
,
A.
Akgul
, and
T.
Sutthibutpong
, “
Analysis of newly developed fractal-fractional derivative with power law kernel for MHD couple stress fluid in channel embedded in a porous medium
,”
Sci. Rep.
11
,
20858
(
2021
).
76.
F.
Brouers
and
T. J.
Al-Musawi
, “
Brouers-Sotolongo fractal kinetics versus fractional derivative kinetics: A new strategy to analyze the pollutants sorption kinetics in porous materials
,”
J. Hazardous Math.
350
,
162
168
(
2018
).
77.
W.
Chen
, “
Time–space fabric underlying anomalous diffusion
,”
Chaos, Solitons Fractals
28
,
923
929
(
2006
).
78.
W.
Chen
,
H.
Sun
,
X.
Zhang
, and
D.
Korosak
, “
Anomalous diffusion modeling by fractal and fractional derivatives
,”
Comp. Math. Appl.
59
,
1754
1758
(
2010
).
79.
Q.
Wang
,
J.
He
, and
Z.
Li
, “
Fractional model for heat conduction in polar bear hairs
,”
Therm. Sci.
16
,
339
342
(
2012
).
80.
J.
He
, “
A tutorial review on fractal spacetime and fractional calculus
,”
Int. J. Theor. Phys.
53
,
3698
3718
(
2014
).
81.
H.
Cheng
, “
The casimir effect for parallel plates in the spacetime with a fractal extra compactified dimension
,”
Int. J. Theor. Phys.
52
,
3229
3237
(
2013
).
82.
J. H.
He
, “
Fractal calculus and its geometrical explanation
,”
Results Phys.
10
,
272
276
(
2013
).
83.
Y.
Zhang
,
D. A.
Benson
, and
D. M.
Reeves
, “
Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications
,”
Adv. Water Res.
32
,
561
581
(
2009
).
84.
“Indicadores de Inconsistências de Sífilis nos Municípios Brasileiros,” see http://indicadoressifilis.aids.gov.br.
85.
C.
Saad-Roy
,
Z.
Shuai
, and
P.
van den Driessche
, “
A mathematical model of syphilis transmission in an MSM population
,”
Math. Biosci.
277
,
59
70
(
2016
).
86.
F. A.
Milner
and
R.
Zhao
, “
A new mathematical model of syphilis
,”
Math. Model. Nat. Phen.
5
,
96
108
(
2010
).
87.
E.
Iboi
and
D.
Okuonghae
, “
Population dynamics of a mathematical model for syphilis
,”
Appl. Math. Model.
40
,
3573
3590
(
2016
).
88.
Panorama do Censo 2022—IBGE, see https://censo2022.ibge.gov.br/panorama/ (last accessed July 3, 2023).
89.
K.
Diethelm
,
N.
Ford
,
A.
Freed
, and
Y.
Luchko
, “
Algorithms for the fractional calculus: A selection of numerical methods
,”
Comput. Methods Appl. Mech. Eng.
194
,
743
773
(
2005
).
90.
I. A.
Moneim
and
D.
Greenhalgh
, “
Use of a periodic vaccination strategy to control the spread of epidemics with seasonally varying contact rate
,”
Math. Biosci. Eng.
2
(
3
),
591
611
(
2005
).
91.
J. K.
Hale
,
Ordinary Differential Equations
(
Wiley
,
New York
,
1969
).
92.
S.
Gao
,
L.
Chen
, and
Z.
Teng
, “
Analysis of an SEIRS epidemic model with time delays and pulse vaccination
,”
Rocky Mt. J. Math.
38
(
5
),
1385
1402
(
2008
).
93.
S.
Gao
,
Y.
Liu
,
J. J.
Nieto
, and
H.
Andrade
, “
Seasonality and mixed vaccination strategy in an epidemic model with vertical transmission
,”
Math. Comp. Sim.
81
,
1855
1868
(
2011
).
95.
T. V.
Elzhov
,
K. M.
Mullen
,
A. N.
Spiess
, and
B.
Bolker
, “min-pack.lm: R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in minpack, plus support for bounds. R package version 1.2-1,” 2020, see https://CRAN.R-project.org/package=minpack.lm.
96.
A. A. O.
Silva
,
L. M.
Leony
,
W. V.
de Souza
,
N. E. M.
Freitas
,
R. T.
Daltro
,
E. F.
Santos
,
L. C. M.
Vasconcelos
,
M. F. R.
Grassi
,
C. G.
Regis-Silva
, and
F. L. N.
Santos
, “
Spatiotemporal distribution analysis of syphilis in Brazil: Cases of congenital and syphilis in pregnant women from 2001–2017
,”
PLoS One
17
(
10
),
e0275731
(
2022
).
97.
I. V.
Teixeira
,
M. T. S.
Leite
,
F. L. M.
Melo
,
E. S.
Rocha
,
S.
Sadok
,
A. S. P. C.
Carrarine
,
M.
Santana
,
C. P.
Rodrigues
,
A. M. L.
Oliveira
,
K. V.
Gadelha
,
C. M.
de Morais
,
J.
Kelner
, and
P. T.
Endo
, “
Predicting congenital syphilis cases: A performance evaluation of different machine learning models
,”
PLoS One
18
(
6
),
e0276150
(
2023
).
98.
G.
Ibáñez-Cervantes
,
G.
León-García
,
C.
Vargas-De-León
,
G.
Castro-Escarpulli
,
C.
Bandala
,
O.
Sosa-Hernández
,
J.
Mancilla-Ramírez
,
A.
Rojas-Bernabé
,
M. A.
Cureño-Díaz
,
E. M.
Durán-Manuel
,
C.
Cruz-Cruz
,
J. C.
Bravata-Alcántara
,
D.
Juárez-Ascencio
, and
J. M.
Bello-López
, “
Epidemiological behavior and current forecast of syphilis in Mexico: Increase in male population
,”
Public Health
185
,
386
393
(
2020
).
99.
Z.
Zhu
,
X.
Zhu
,
Y.
Zhan
,
L.
Gu
,
L.
Chen
, and
X.
Li
, “
Development and comparison of predictive models for sexually transmitted diseases—AIDS, gonorrhea, and syphilis in China, 2011–2021
,”
Front. Public Health
10
,
966813
(
2022
).
You do not currently have access to this content.