We present a novel method for analyzing brain functional networks using functional magnetic resonance imaging data, which involves utilizing consensus networks. In this study, we compare our approach to a standard group-based method for patients diagnosed with major depressive disorder (MDD) and a healthy control group, taking into account different levels of connectivity. Our findings demonstrate that the consensus network approach uncovers distinct characteristics in network measures and degree distributions when considering connection strengths. In the healthy control group, as connection strengths increase, we observe a transition in the network topology from a combination of scale-free and random topologies to a small-world topology. Conversely, the MDD group exhibits uncertainty in weak connections, while strong connections display small-world properties. In contrast, the group-based approach does not exhibit significant differences in behavior between the two groups. However, it does indicate a transition in topology from a scale-free-like structure to a combination of small-world and scale-free topologies. The use of the consensus network approach also holds immense potential for the classification of MDD patients, as it unveils substantial distinctions between the two groups.

1.
D. S.
Bassett
and
O.
Sporns
, “
Network neuroscience
,”
Nat. Neurosci.
20
(
3
),
353
364
(
2017
).
2.
A. E.
Hramov
,
N. S.
Frolov
,
V. A.
Maksimenko
,
S. A.
Kurkin
,
V. B.
Kazantsev
, and
A. N.
Pisarchik
, “
Functional networks of the brain: From connectivity restoration to dynamic integration
,”
Phys.-Usp.
64
(
6
),
584
(
2021
).
3.
J.
Wang
,
X.
Zuo
, and
Y.
He
, “
Graph-based network analysis of resting-state functional MRI
,”
Front. Syst. Neurosci.
4
,
16
(
2010
).
4.
A. M.
Bastos
and
J.-M.
Schoffelen
, “
A tutorial review of functional connectivity analysis methods and their interpretational pitfalls
,”
Front. Syst. Neurosci.
9
,
175
(
2016
).
5.
T.
Yamada
,
R.-I.
Hashimoto
,
N.
Yahata
,
N.
Ichikawa
,
Y.
Yoshihara
,
Y.
Okamoto
,
N.
Kato
,
H.
Takahashi
, and
M.
Kawato
, “
Resting-state functional connectivity-based biomarkers and functional MRI-based neurofeedback for psychiatric disorders: A challenge for developing theranostic biomarkers
,”
Int. J. Neuropsychopharmacol.
20
(
10
),
769
781
(
2017
).
6.
M.
Perovnik
,
T.
Rus
,
K. A.
Schindlbeck
, and
D.
Eidelberg
, “
Functional brain networks in the evaluation of patients with neurodegenerative disorders
,”
Nat. Rev. Neurol.
19
(
2
),
73
90
(
2023
).
7.
D.
Stoyanov
,
V.
Khorev
,
R.
Paunova
,
S.
Kandilarova
,
D.
Simeonova
,
A.
Badarin
,
A.
Hramov
, and
S.
Kurkin
, “
Resting-state functional connectivity impairment in patients with major depressive episode
,”
Int. J. Environ. Res. Public Health
19
(
21
),
14045
(
2022
).
8.
A. V.
Andreev
,
S. A.
Kurkin
,
D.
Stoyanov
,
A. A.
Badarin
,
R.
Paunova
, and
A. E.
Hramov
, “
Toward interpretability of machine learning methods for the classification of patients with major depressive disorder based on functional network measures
,”
Chaos
33
(
6
),
063140
(
2023
).
9.
C.
Giusti
,
R.
Ghrist
, and
D. S.
Bassett
, “
Two’s company, three (or more) is a simplex: Algebraic-topological tools for understanding higher-order structure in neural data
,”
J. Comput. Neurosci.
41
,
1
14
(
2016
).
10.
M.
Zanin
,
P.
Sousa
,
D.
Papo
,
R.
Bajo
,
J.
García-Prieto
,
F. D.
Pozo
,
E.
Menasalvas
, and
S.
Boccaletti
, “
Optimizing functional network representation of multivariate time series
,”
Sci. Rep.
2
(
1
),
1
6
(
2012
).
11.
P.
Zachar
,
D. S.
Stoyanov
,
M.
Aragona
, and
A.
Jablensky
,
Alternative Perspectives on Psychiatric Validation
(
OUP
,
Oxford
,
2014
).
12.
E. N.
Pitsik
,
V. A.
Maximenko
,
S. A.
Kurkin
,
A. P.
Sergeev
,
D.
Stoyanov
,
R.
Paunova
,
S.
Kandilarova
,
D.
Simeonova
, and
A. E.
Hramov
, “
The topology of fMRI-based networks defines the performance of a graph neural network for the classification of patients with major depressive disorder
,”
Chaos, Solitons Fractals
167
,
113041
(
2023
).
13.
B.
Holland
and
V.
Moulton
, “Consensus networks: A method for visualising incompatibilities in collections of trees,” in International Workshop on Algorithms in Bioinformatics (Springer, 2003), pp. 165–176.
14.
M.
Andjelković
,
B.
Tadić
, and
R.
Melnik
, “
The topology of higher-order complexes associated with brain hubs in human connectomes
,”
Sci. Rep.
10
, 17320 (
2020
).
15.
A.
Deeter
,
M.
Dalman
,
J.
Haddad
, and
Z.-H.
Duan
, “
Inferring gene and protein interactions using pubmed citations and consensus Bayesian networks
,”
PLoS One
12
(
10
),
e0186004
(
2017
).
16.
B. R.
Holland
,
K. T.
Huber
,
V.
Moulton
, and
P. J.
Lockhart
, “
Using consensus networks to visualize contradictory evidence for species phylogeny
,”
Mol. Biol. Evol.
21
(
7
),
1459
1461
(
2004
).
17.
M.
Rubinov
and
O.
Sporns
, “
Weight-conserving characterization of complex functional brain networks
,”
NeuroImage
56
(
4
),
2068
2079
(
2011
).
18.
M. P.
Van Den Heuvel
,
C. J.
Stam
,
R. S.
Kahn
, and
H. E. H.
Pol
, “
Efficiency of functional brain networks and intellectual performance
,”
J. Neurosci.
29
(
23
),
7619
7624
(
2009
).
19.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
(
6684
),
440
442
(
1998
).
20.
G.
Costantini
and
M.
Perugini
, “
Generalization of clustering coefficients to signed correlation networks
,”
PLoS One
9
(
2
),
e88669
(
2014
).
21.
M. D.
Humphries
and
K.
Gurney
, “
Network ‘small-world-ness’: A quantitative method for determining canonical network equivalence
,”
PLoS One
3
(
4
),
e0002051
(
2008
).
22.
Q.
Telesford
,
K.
Joyce
,
S.
Hayasaka
,
J.
Burdette
, and
P.
Laurienti
, “
The ubiquity of small-world networks
,”
Brain Connect.
1
(
5
),
367
375
(
2011
).
23.
R.
Albert
and
A.-L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
(
1
),
47
(
2002
).
You do not currently have access to this content.