Synchronization of chaotic systems is usually investigated for structurally equivalent systems typically coupled through linear diffusive functions. Here, we focus on a particular type of coupling borrowed from a nonlinear control theory and based on the optimal placement of a sensor—a device measuring the chosen variable—and an actuator—a device applying the actuating (control) signal to a variable’s derivative—in the response system, leading to the so-called flat control law. We aim to investigate the dynamics produced by a response system that is flat coupled to a drive system and to determine the degree of generalized synchronization between them using statistical and topological arguments. The general use of a flat control law for getting generalized synchronization is discussed.

1.
L. M.
Pecora
and
T. L.
Carroll
, “
Synchronization in chaotic systems
,”
Phys. Rev. Lett.
64
,
821
824
(
1990
).
2.
V.
Pérez-Villar
,
A. P.
Muñuzuri
,
V.
Pérez-Muñuzuri
, and
L. O.
Chua
, “
Chaotic synchronization of a one-dimensional array of nonlinear active systems
,”
Int. J. Bifurcat. Chaos
03
,
1067
1074
(
1993
).
3.
V. S.
Anishchenko
,
T. E.
Vadivasova
,
D. E.
Postnov
, and
M. A.
Safonova
, “
Synchronization of chaos
,”
Int. J. Bifurcat. Chaos
02
,
633
644
(
1992
).
4.
L. M.
Pecora
and
T. L.
Carroll
, “
Master stability functions for synchronized coupled systems
,”
Phys. Rev. Lett.
80
,
2109
2112
(
1998
).
5.
K.
Josic
, “
Synchronization of chaotic systems and invariant manifolds
,”
Nonlinearity
13
,
1321
(
2000
).
6.
T.-L.
Liao
and
S.-H.
Tsai
, “
Adaptive synchronization of chaotic systems and its application to secure communications
,”
Chaos, Solitons Fractals
11
,
1387
1396
(
2000
).
7.
S.
Boccaletti
,
J.
Kurths
,
G.
Osipov
,
D. L.
Valladares
, and
C. S.
Zhou
, “
The synchronization of chaotic systems
,”
Phys. Rep.
366
,
1
101
(
2002
).
8.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
).
9.
M.
Feki
, “
An adaptive chaos synchronization scheme applied to secure communication
,”
Chaos, Solitons Fractals
18
,
141
148
(
2003
).
10.
D.
Eroglu
,
J. S. W.
Lamb
, and
T.
Pereira
, “
Synchronisation of chaos and its applications
,”
Contemp. Phys.
58
,
207
243
(
2017
).
11.
C.
Jiang
,
F.
Zhang
, and
T.
Li
, “
Synchronization and antisynchronization of n-coupled fractional-order complex chaotic systems with ring connection
,”
Math. Methods Appl. Sci.
41
,
2625
2638
(
2018
).
12.
N. F.
Rulkov
,
M. M.
Sushchik
,
L. S.
Tsimring
, and
H. D. I.
Abarbanel
, “
Generalized synchronization of chaos in directionally coupled chaotic systems
,”
Phys. Rev. E
51
,
980
994
(
1995
).
13.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillators
,”
Phys. Rev. Lett.
76
,
1804
1807
(
1996
).
14.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
From phase to lag synchronization in coupled chaotic oscillators
,”
Phys. Rev. Lett.
78
,
4193
4196
(
1997
).
15.
V. S.
Afraimovich
,
N. N.
Verichev
, and
M. I.
Rabinovich
, “
Stochastic synchronization of oscillation in dissipative systems
,”
Radiophys. Quantum Electron.
29
,
795
803
(
1986
).
16.
S.
Boccaletti
,
D. L.
Valladares
,
J.
Kurths
,
D.
Maza
, and
H.
Mancini
, “
Synchronization of chaotic structurally nonequivalent systems
,”
Phys. Rev. E
61
,
3712
3715
(
2000
).
17.
R.
Femat
and
G.
Solís-Perales
, “
Synchronization of chaotic systems with different order
,”
Phys. Rev. E
65
,
036226
(
2002
).
18.
G.
Zhang
,
Z.
Liu
, and
Z.
Ma
, “
Generalized synchronization of different dimensional chaotic dynamical systems
,”
Chaos, Solitons Fractals
32
,
773
779
(
2007
).
19.
W.
He
and
J.
Cao
, “
Generalized synchronization of chaotic systems: An auxiliary system approach via matrix measure
,”
Chaos
19
,
013118
(
2009
).
20.
N.
Corron
and
D.
Hahs
, “
A new approach to communications using chaotic signals
,”
IEEE Trans. Circuits Syst. I
44
,
373
382
(
1997
).
21.
H.
Huijberts
,
H.
Nijmeijer
, and
R.
Willems
, “
System identification in communication with chaotic systems
,”
IEEE Trans. Circuits Syst. I
47
,
800
808
(
2000
).
22.
P.
Johnson
and
K.
Busawon
, “
Chaotic synchronisation for secure communication using PI-observers
,”
IFAC Proc. Vol.
39
,
184
189
(
2006
).
23.
H.
Hamiche
,
M.
Ghanes
,
J.-P.
Barbot
,
K.
Kemih
, and
S.
Djennoune
, “
Hybrid dynamical systems for private digital communication
,”
Int. J. Model. Identif. Control
20
,
99
113
(
2013
).
24.
L.
Kocarev
and
U.
Parlitz
, “
Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems
,”
Phys. Rev. Lett.
76
,
1816
1819
(
1996
).
25.
H. D. I.
Abarbanel
,
N. F.
Rulkov
, and
M. M.
Sushchik
, “
Generalized synchronization of chaos: The auxiliary system approach
,”
Phys. Rev. E
53
,
4528
4535
(
1996
).
26.
G. A.
Johnson
,
D. J.
Mar
,
T. L.
Carroll
, and
L. M.
Pecora
, “
Synchronization and imposed bifurcations in the presence of large parameter mismatch
,”
Phys. Rev. Lett.
80
,
3956
3959
(
1998
).
27.
S.
Gu
,
F.
Pasqualetti
,
M.
Cieslak
,
Q. K.
Telesford
,
A. B.
Yu
,
A. E.
Kahn
,
J. D.
Medaglia
,
J. M.
Vettel
,
M. B.
Miller
,
S. T.
Grafton
, and
D. S.
Bassett
, “
Controllability of structural brain networks
,”
Nat. Commun.
6
,
8414
(
2015
).
28.
K.
Pyragas
, “
Weak and strong synchronization of chaos
,”
Phys. Rev. E
54
,
R4508
R4511
(
1996
).
29.
U.
Parlitz
,
L.
Junge
, and
L.
Kocarev
, “
Subharmonic entrainment of unstable period orbits and generalized synchronization
,”
Phys. Rev. Lett.
79
,
3158
3161
(
1997
).
30.
U.
Parlitz
, “
Detecting generalized synchronization
,”
Nonlinear Theory Appl. IEICE
3
,
113
127
(
2012
).
31.
B. R.
Hunt
,
E.
Ott
, and
J. A.
Yorke
, “
Differentiable generalized synchronization of chaos
,”
Phys. Rev. E
55
,
4029
4034
(
1997
).
32.
I.
Blekhman
,
A.
Fradkov
,
H.
Nijmeijer
, and
A.
Pogromsky
, “
On self-synchronization and controlled synchronization
,”
Syst. Control Lett.
31
,
299
305
(
1997
).
33.
L. M.
Pecora
,
T. L.
Carroll
, and
J. F.
Heagy
, “
Statistics for mathematical properties of maps between time series embeddings
,”
Phys. Rev. E
52
,
3420
3439
(
1995
).
34.
L.
Pastur
,
S.
Boccaletti
, and
P. L.
Ramazza
, “
Detecting local synchronization in coupled chaotic systems
,”
Phys. Rev. E
69
,
036201
(
2004
).
35.
D. J.
Gauthier
and
J. C.
Bienfang
, “
Intermittent loss of synchronization in coupled chaotic oscillators: Toward a new criterion for high-quality synchronization
,”
Phys. Rev. Lett.
77
,
1751
1754
(
1996
).
36.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
37.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
398
(
1976
).
38.
H.
Nijmeijer
and
A.
van der Schaft
,
Nonlinear Dynamical Control Systems
(
Springer-Verlag
,
New York
,
1990
).
39.
A.
Isidori
,
Nonlinear Control Systems
(
Springer
,
1995
).
40.
X.
Li
,
X.
Wang
, and
G.
Chen
, “
Pinning a complex dynamical network to its equilibrium
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
51
,
2074
2087
(
2004
).
41.
X.
Wu
,
G.
Chen
, and
J.
Cai
, “
Chaos synchronization of the master–slave generalized Lorenz systems via linear state error feedback control
,”
Physica D
229
,
52
80
(
2007
).
42.
Y.
Xu
,
W.
Zhou
,
J.
Fang
, and
W.
Sun
, “
Adaptive synchronization of the complex dynamical network with non-derivative and derivative coupling
,”
Phys. Lett. A
374
,
1673
1677
(
2010
).
43.
C.-Z.
Chen
,
T.
Fan
,
B.-R.
Wang
,
H.
Saberi-Nik
, and
P.
He
, “
Feedback linearization synchronization of unified chaotic systems
,”
J. Appl. Nonlinear Dyn.
3
,
173
186
(
2014
).
44.
M.
Fliess
,
J. L.
Lévine
,
P.
Martin
, and
P.
Rouchon
, “
Sur les systèmes non linéaires différentiellement plats
,”
Comptes-Rendus de l’Académie des Sciences
315
,
619
624
(
1992
).
45.
E. M. A. M.
Mendes
,
C.
Lainscsek
, and
C.
Letellier
, “
Diffeomorphical equivalence vs topological equivalence among Sprott systems
,”
Chaos
31
,
083126
(
2021
).
46.
C.
Letellier
and
L. A.
Aguirre
, “
Investigating nonlinear dynamics from time series: The influence of symmetries and the choice of observables
,”
Chaos
12
,
549
558
(
2002
).
47.
C.
Letellier
and
L. A.
Aguirre
, “
Graphical interpretation of observability in terms of feedback circuits
,”
Phys. Rev. E
72
,
056202
(
2005
).
48.
J. C.
Sprott
, “
Some simple chaotic jerk functions
,”
Am. J. Phys.
65
,
537
543
(
1997
).
49.
R.
Kalman
, “
On the general theory of control systems
,”
IFAC Proc. Vol.
1
,
491
502
(
1960
), 1st International IFAC Congress on Automatic and Remote Control, Moscow, USSR, 1960.
50.
C.
Letellier
and
J.-P.
Barbot
, “
Flatness for an optimal control of chaotic systems using a minimal numbers of sensors and actuators
,”
Chaos
31
,
103114
(
2021
).
51.
C.
Letellier
,
N.
Stankevich
, and
O. E.
Rössler
, “
Dynamical taxonomy: Some taxonomic ranks to systematically classify every chaotic attractor
,”
Int. J. Bifurcat. Chaos
32
,
2230004
(
2022
).
52.
C.
Letellier
,
S.
Mangiarotti
,
L.
Minati
,
M.
Frasca
, and
J.-P.
Barbot
, “
Optimal placement of sensor and actuator for controlling low-dimensional chaotic systems based on global modeling
,”
Chaos
33
,
013140
(
2023
).
53.
M.
Fliess
,
J. L.
Lévine
,
P.
Martin
, and
P.
Rouchon
, “
Flatness and defect of non-linear systems: Introductory theory and examples
,”
Int. J. Control.
61
,
1327
1361
(
1995
).
54.
S.
Boccaletti
,
C.
Grebogi
,
Y.-C.
Lai
,
H.
Mancini
, and
D.
Maza
, “
The control of chaos: Theory and applications
,”
Phys. Rep.
329
,
103
197
(
2000
).
55.
R.
Gutiérrez
,
R.
Sevilla-Escoboza
,
P.
Piedrahita
,
C.
Finke
,
U.
Feudel
,
J. M.
Buldú
,
G.
Huerta-Cuellar
,
R.
Jaimes-Reátegui
,
Y.
Moreno
, and
S.
Boccaletti
, “
Generalized synchronization in relay systems with instantaneous coupling
,”
Phys. Rev. E
88
,
052908
(
2013
).
56.
N.
Lahav
,
I.
Sendiña Nadal
,
C.
Hens
,
B.
Ksherim
,
B.
Barzel
,
R.
Cohen
, and
S.
Boccaletti
, “
Synchronization of chaotic systems: A microscopic description
,”
Phys. Rev. E
98
,
052204
(
2018
).
57.
Y.-Y.
Liu
,
J.-J.
Slotine
, and
A.-L.
Barabási
, “
Observability of complex systems
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
2460
2465
(
2013
).
58.
C.
Letellier
,
I.
Sendiña-Nadal
,
E.
Bianco-Martinez
, and
M. S.
Baptista
, “
A symbolic network-based nonlinear theory for dynamical systems observability
,”
Sci. Rep.
8
,
3785
(
2018
).
59.
C.
Letellier
,
I.
Sendiña-Nadal
, and
L. A.
Aguirre
, “
A nonlinear graph-based theory for dynamical network observability
,”
Phys. Rev. E
98
,
020303(R)
(
2018
).
60.
C.-T.
Lin
, “
Structural controllability
,”
IEEE Trans. Autom. Control
19
,
201
208
(
1974
).
61.
R.
Hermann
and
A.
Krener
, “
Nonlinear controllability and observability
,”
IEEE Trans. Autom. Control
22
,
728
740
(
1977
).
62.
B.
Jakubczyk
and
W.
Respondek
, “
On linearization of control systems
,”
Bulletin de l’Académie Polonaise. Série des Sciences Mathématiques
28
,
517
522
(
1980
).
63.
L.
Hunt
,
R.
Su
, and
G.
Meyer
, “
Global transformations of nonlinear systems
,”
IEEE Trans. Autom. Control
28
,
24
31
(
1983
).
64.
A.
Isidori
,
A.
Krener
,
C.
Gori-Giorgi
, and
S.
Monaco
, “
Nonlinear decoupling via feedback: A differential geometric approach
,”
IEEE Trans. Autom. Control
26
,
331
345
(
1981
).
65.
G.
Franklin
,
J.
Powell
, and
A.
Emami-Naeini
,
Feedback Control of Dynamic Systems
,
8th ed.
(
Pearson
,
2015
).
66.
J.
Lissajous
, ‘
Mémoire sur l’étude optique des mouvements vibratoires
,’
Annales de Chimie et de Physique III
,
51
,
146
231
(
1857
).
67.
R.
Quian Quiroga
,
A.
Kraskov
,
T.
Kreuz
, and
P.
Grassberger
, “
Performance of different synchronization measures in real data: A case study on electroencephalographic signals
,”
Phys. Rev. E
65
,
041903
(
2002
).
68.
C.
Letellier
,
P.
Dutertre
, and
B.
Maheu
, “
Unstable periodic orbits and templates of the Rössler system: Toward a systematic topological characterization
,”
Chaos
5
,
271
282
(
1995
).
69.
L.
Huang
,
Q.
Chen
,
Y.-C.
Lai
, and
L. M.
Pecora
, “
Generic behavior of master-stability functions in coupled nonlinear dynamical systems
,”
Phys. Rev. E
80
,
036204
(
2009
).
70.
K.
Pyragas
, “
Continuous control of chaos by self-controlling feedback
,”
Phys. Lett. A
170
,
421
428
(
1992
).
71.
C.
Letellier
and
R.
Gilmore
, “
Covering dynamical systems: Two-fold covers
,”
Phys. Rev. E
63
,
016206
(
2001
).
72.
G. P.
King
and
I.
Stewart
, “
Phase space reconstruction for symmetric dynamical systems
,”
Physica D
58
,
216
228
(
1992
).
73.
L.
Rosier
, “
Homogeneous Lyapunov function for homogeneous continuous vector field
,”
Syst. Control Lett.
19
,
467
473
(
1992
).
74.
A.
Polyakov
, “
On homogeneous controllability functions
,”
Visnyk V. N. Karazin Kharkiv Natl. Univ. Ser. Math. Appl. Math. Mech.
94
,
24
39
(
2021
).
75.
R.
Schenkendorf
,
U.
Reichl
, and
M.
Mangold
, “
Parameter identification of time-delay systems: A flatness based approach
,”
IFAC Proc. Vol.
45
,
165
170
(
2012
), 7th Vienna International Conference on Mathematical Modelling.
76.
G.
Tanaka
,
T.
Yamane
,
J. B.
Héroux
,
R.
Nakane
,
N.
Kanazawa
,
S.
Takeda
,
H.
Numata
,
D.
Nakano
, and
A.
Hirose
, “
Recent advances in physical reservoir computing: A review
,”
Neural Netw.
115
,
100
123
(
2019
).
77.
H.
Bai-Lin
,
Elementary Symbolic Dynamics and Chaos in Dissipative Systems
(
World Scientific Publishing
,
Singapore
,
1989
).
78.
C.
Letellier
, “Caractérisation topologique et reconstruction des attracteurs étranges,” Ph.D. thesis (University of Paris VII, Paris, France, 1994).
79.
N. B.
Tufillaro
,
T.
Abbott
, and
J.
Reilly
,
An Experimental Approach to Nonlinear Dynamics and Chaos
(
Addison-Wesley
,
Redwood City, CA
,
1992
).
80.
J. L.
Hindmarsh
and
R. M.
Rose
, “
A model of neuronal bursting using three coupled first order differential equations
,”
Proc. R. Soc. Lond. B
221
,
87
102
(
1984
).
81.
I.
Sendiña-Nadal
,
S.
Boccaletti
, and
C.
Letellier
, “
Observability coefficients for predicting the class of synchronizability from the algebraic structure of the local oscillators
,”
Phys. Rev. E
94
,
042205
(
2016
).
82.
L. A.
Aguirre
,
L. L.
Portes
, and
C.
Letellier
, “
Observability and synchronization of neuron models
,”
Chaos
27
,
103103
(
2017
).
83.
J. L.
Hindmarsh
and
R. M.
Rose
, “
A model for rebound bursting in mammalian neurons
,”
Philos. Trans. Biol. Sci.
346
,
129
150
(
1994
).
84.
M.
Frunzete
,
J.-P.
Barbot
, and
C.
Letellier
, “
Influence of the singular manifold of nonobservable states in reconstructing chaotic attractors
,”
Phys. Rev. E
86
,
026205
(
2012
).
85.
T.
Ushio
, “
Limitation of delayed feedback control in nonlinear discrete-time systems
,”
IEEE Trans. Circuits Syst. I
43
,
815
816
(
1996
).
86.
H.
Nakajima
, “
On analytical properties of delayed feedback control of chaos
,”
Phys. Lett. A
232
,
207
210
(
1997
).
87.
W.
Just
,
E.
Reibold
,
H.
Benner
,
K.
Kacperski
,
P.
Fronczak
, and
J.
Holyst
, “
Limits of time-delayed feedback control
,”
Phys. Lett. A
254
,
158
164
(
1999
).
88.
W.
Perruquetti
and
J.-P.
Barbot
,
Chaos in Automatic Control
(
CRC Press
,
Boca Raton, FL
,
2005
).
You do not currently have access to this content.