Achieving synchronization in coupled non-identical chaotic systems has been a difficult endeavor, and improving the stability of synchronization in such systems poses additional challenges. This research work addresses these challenges by identifying stable synchronization in coupled non-identical chaotic systems and enhancing its stability. The study explores chaotic attractors that arise from various system parameters to provide generalized results. Furthermore, the impact of the transient uncoupling factor on improving synchronization stability in coupled non-identical counter-rotating chaotic oscillators is discussed. By investigating these aspects, the research aims to contribute to the understanding and advancement of synchronization in coupled non-identical chaotic systems.

1.
M.
Pecora
and
T. L.
Carroll
, “
Synchronization in chaotic systems
,”
Phys. Rev. Lett.
64
,
821
824
(
1990
).
2.
J.
Peña Ramirez
,
L. A.
Olvera
,
H.
Nijmeijer
, and
J.
Alvarez
, “
The sympathy of two pendulum clocks: beyond Huygens' observations
,”
Sci. Rep.
6
,
23580
(
2016
).
3.
J.
Pena Ramirez
,
E.
Garcia
, and
J.
Alvarez
, “
Master-slave synchronization via dynamic control
,”
Commun. Nonlinear Sci. Numer. Simul.
80
,
104977
(
2020
).
4.
K.
Srinivasan
,
D. V.
Senthilkumar
,
I.
Raja Mohamed
,
K.
Murali
,
M.
Lakshmanan
, and
J.
Kurths
, “
Anticipating, complete and lag synchronizations in RC phase-shift network based coupled Chua’s circuits without delay
,”
Chaos
22
,
023124
(
2012
).
5.
K.
Srinivasan
,
V.
Chandrasekar
,
R.
Gladwin Pradeep
,
K.
Murali
, and
M.
Lakshmanan
, “
Different types of synchronization in coupled network based chaotic circuits
,”
Commun. Nonlinear Sci. Numer. Simul.
39
,
156
168
(
2016
).
6.
R.
Kumar
,
S.
Bilal
, and
R.
Ramaswamy
, “
Synchronization properties of coupled chaotic neurons: The role of random shared input
,”
Chaos
26
,
063118
(
2016
).
7.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillators
,”
Phys. Rev. Lett.
76
,
1804
1807
(
1996
).
8.
S.
Boccaletti
,
J.
Kurths
,
G.
Osipov
,
D. L.
Valladares
, and
C. S.
Zhou
, “
The synchronization of chaotic systems
,”
Phys. Rep.
366
,
1
101
(
2002
).
9.
A.
Pikovsky
,
M.
Rosenblum
,
J.
Kurths
, and
J.
Kurths
, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series (Cambridge University Press, 2003).
10.
A.
Prasad
, “
Universal occurrence of mixed-synchronization in counter-rotating nonlinear coupled oscillators
,”
Chaos Soliton. Fract.
43
,
42
46
(
2010
).
11.
S. K.
Bhowmick
,
D.
Ghosh
, and
S. K.
Dana
, “
Synchronization in counter-rotating oscillators
,”
Chaos
21
,
033118
(
2011
).
12.
S. K.
Bhowmick
,
B. K.
Bera
, and
D.
Ghosh
, “
Generalized counter-rotating oscillators: Mixed synchronization
,”
Commun. Nonlinear Sci. Numer. Simul.
22
,
692
701
(
2015
).
13.
N.
Punetha
,
V.
Varshney
,
S.
Sahoo
,
G.
Saxena
,
A.
Prasad
, and
R.
Ramaswamy
, “
Dynamical effects of breaking rotational symmetry in counter-rotating Stuart-Landau oscillators
,”
Phys. Rev. E
98
,
022212
(
2018
).
14.
J.-W.
Ryu
,
W.-S.
Son
, and
D.-U.
Hwang
, “
Oscillation death in coupled counter-rotating identical nonlinear oscillators
,”
Phys. Rev. E
100
,
022209
(
2019
).
15.
K.
Sathiyadevi
,
V. K.
Chandrasekar
, and
M.
Lakshmanan
, “
Emerging chimera states under nonidentical counter-rotating oscillators
,”
Phys. Rev. E
105
,
034211
(
2022
).
16.
Y.
Sugitani
,
Y.
Zhang
, and
A. E.
Motter
, “
Synchronizing chaos with imperfections
,”
Phys. Rev. Lett.
126
,
164101
(
2021
).
17.
M.
Schröder
,
M.
Mannattil
,
D.
Dutta
,
S.
Chakraborty
, and
M.
Timme
, “
Transient uncoupling induces synchronization
,”
Phys. Rev. Lett.
115
,
054101
(
2015
).
18.
M.
Schröder
,
S.
Chakraborty
,
D.
Witthaut
,
J.
Nagler
, and
M.
Timme
, “
Interaction control to synchronize non-synchronizable networks
,”
Sci. Rep.
6
,
37142
(
2016
).
19.
A.
Tandon
,
M.
Schröder
,
M.
Mannattil
,
M.
Timme
, and
S.
Chakraborty
, “
Synchronizing noisy nonidentical oscillators by transient uncoupling
,”
Chaos
26
,
094817
(
2016
).
20.
A.
Ghosh
,
P.
Godara
, and
S.
Chakraborty
, “
Understanding transient uncoupling induced synchronization through modified dynamic coupling
,”
Chaos
28
,
053112
(
2018
).
21.
B. D.
Sharmila
,
G.
Sivaganesh
, and
A.
Arulgnanam
, “
Inducement and enhancement of synchronization stability by transient uncoupling in coupled chaotic systems with inherent frequency parameters
,”
Eur. Phys. J. B
93
,
72
(
2020
).
22.
B. D.
Sharmila
,
G.
Sivaganesh
, and
A.
Arulgnanam
, “
Effect of optimal uncoupling in enhancing synchronization stability in drive-response systems
,”
Europhys. Lett.
131
,
60003
(
2020
).
23.
S.
Acharyya
and
R. E.
Amritkar
, “
Synchronization of coupled nonidentical dynamical systems
,”
Europhys. Lett.
99
,
40005
(
2012
).
24.
M.
Pecora
and
T. L.
Carroll
, “
Master stability functions for synchronized coupled systems
,”
Phys. Rev. Lett.
80
,
2109
2112
(
1998
).
25.
M.
Pecora
,
T. L.
Carroll
,
A.
Johnson
,
J.
Mar
, and
J. F.
Heagy
, “
Fundamentals of synchronization in chaotic systems, concepts, and applications
,”
Chaos
7
,
520
543
(
1997
).
26.
O.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
398
(
1976
).
You do not currently have access to this content.