We investigate the spatial dynamics of two-disease epidemics reaching a three-species cyclic model. Regardless of their species, all individuals are susceptible to being infected with two different pathogens, which spread through person-to-person contact. We consider that the simultaneous presence of multiple infections leads to a synergistic amplification in the probability of host mortality due to complications arising from any of the co-occurring diseases. Employing stochastic simulations, we explore the ramifications of this synergistic coinfection on spatial configurations that emerge from stochastic initial conditions. Under conditions of pronounced synergistic coinfection, we identify the emergence of zones inhabited solely by hosts affected by a singular pathogen. At the boundaries of spatial domains dominated by a single disease, interfaces of coinfected hosts appear. The dynamics of these interfaces are shaped by curvature-driven processes and display a scaling behavior reflective of the topological attributes of the underlying two-dimensional space. As the lethality linked to coinfection diminishes, the evolution of the interface network’s spatial dynamics is influenced by fluctuations stemming from waves of coinfection that infiltrate territories predominantly occupied by a single disease. Our analysis extends to quantifying the implications of synergistic coinfection at both the individual and population levels Our outcomes show that organisms’ infection risk is maximized if the coinfection increases the death due to disease by 30 % and minimized as the network dynamics reach the scaling regime, with species populations being maximum. Our conclusions may help ecologists understand the dynamics of epidemics and their impact on the stability of ecosystems.

1
M.
Begon
,
C. R.
Townsend
, and
J. L.
Harper
,
Ecology: From Individuals to Ecosystems
(
Blackwell Publishing
,
Oxford
,
2006
).
2
B.
Kerr
,
M. A.
Riley
,
M. W.
Feldman
, and
B. J. M.
Bohannan
, “
Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors
,”
Nature
418
,
171
(
2002
).
3
R.
Durret
and
S.
Levin
, “
Allelopathy in spatially distributed populations
,”
J. Theor. Biol.
185
,
165
171
(
1997
).
4
B. C.
Kirkup
and
M. A.
Riley
, “
Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo
,”
Nature
428
,
412
414
(
2004
).
5
T.
Reichenbach
,
M.
Mobilia
, and
E.
Frey
, “
Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games
,”
Nature
448
,
1046
1049
(
2007
).
6
T.
Reichenbach
,
M.
Mobilia
, and
E.
Frey
, “
Self-organization of mobile populations in cyclic competition
,”
J. Theor. Biol.
254
,
368
383
(
2008
).
7
J.
Menezes
,
B.
Moura
, and
T. A.
Pereira
, “
Uneven rock-paper-scissors models: Patterns and coexistence
,”
Europhys. Lett.
126
,
18003
(
2019
).
8
K. A.
Kabir
and
J.
Tanimoto
, “
The role of pairwise nonlinear evolutionary dynamics in the rock–paper–scissors game with noise
,”
Appl. Math. Comput.
394
,
125767
(
2021
).
9
J.
Park
and
B.
Jang
, “
Role of adaptive intraspecific competition on collective behavior in the rock–paper–scissors game
,”
Chaos Soliton. Fract.
171
,
113448
(
2023
).
10
E.
Du
,
E.
Chen
,
J.
Liu
, and
C.
Zheng
, “
How do social media and individual behaviors affect epidemic transmission and control?
,”
Sci. Total Environ.
761
,
144114
(
2021
).
11
A. M.
Dunn
,
M. E.
Torchin
,
M. J.
Hatcher
,
P. M.
Kotanen
,
D. M.
Blumenthal
,
J. E.
Byers
,
C. A.
Coon
,
V. M.
Frankel
,
R. D.
Holt
,
R. A.
Hufbauer
,
A. R.
Kanarek
,
K. A.
Schierenbeck
,
L. M.
Wolfe
, and
S. E.
Perkins
, “
Indirect effects of parasites in invasions
,”
Funct. Ecol.
26
,
1262
1274
(
2012
).
12
M. J.
Young
and
N. H.
Fefferman
, “
The dynamics of disease mediated invasions by hosts with immune reproductive tradeoff
,”
Sci. Rep.
12
,
4108
(
2022
).
13
T.
Nagatani
,
G.
Ichinose
, and
K.
ichi Tainaka
, “
Epidemics of random walkers in metapopulation model for complete, cycle, and star graphs
,”
J. Theor. Biol.
450
,
66
75
(
2018
).
14
T. C.
Reluga
, “
Game theory of social distancing in response to an epidemic
,”
PLoS Comput. Biol.
6
,
e1000793
(
2010
).
15
S.
Stockmaier
,
N.
Stroeymeyt
,
E. C.
Shattuck
,
D. M.
Hawley
,
L. A.
Meyers
, and
D. I.
Bolnick
, “
Infectious diseases and social distancing in nature
,”
Science
371
,
eabc8881
(
2021
).
16
S.
Stockmaier
,
N.
Stroeymeyt
,
E. C.
Shattuck
,
D. M.
Hawley
,
L. A.
Meyers
, and
D. I.
Bolnick
, “
Infectious diseases and social distancing in nature
,”
Science
371
,
eabc8881
(2021).
17
G.
Dimarco
,
G.
Toscani
, and
M.
Zanella
, “
Optimal control of epidemic spreading in the presence of social heterogeneity
,”
Philos. Trans. R. Soc. A
380
,
20210160
(
2022
).
18
Q.
Shao
and
D.
Han
, “
Epidemic spreading in metapopulation networks with heterogeneous mobility rates
,”
Appl. Math. Comput.
412
,
126559
(
2022
).
19
P.
Edsberg Møllgaard
,
S.
Lehmann
, and
L.
Alessandretti
, “
Understanding components of mobility during the covid-19 pandemic
,”
Philos. Trans. R. Soc. A
380
,
20210118
(
2022
).
20
T.
Oka
,
W.
Wei
, and
D.
Zhu
, “
The effect of human mobility restrictions on the COVID-19 transmission network in China
,”
PLoS One
16
,
1
16
(
2021
).
21
Ö. F.
Çaparoğlu
,
Y.
Ok
, and
M.
Tutam
, “
To restrict or not to restrict? use of artificial neural network to evaluate the effectiveness of mitigation policies: A case study of turkey
,”
Chaos Soliton. Fract.
151
,
111246
(
2021
).
22
N.
Stroeymeyt
,
A. V.
Grasse
,
A.
Crespi
,
D. P.
Mersch
,
S.
Cremer
, and
L.
Keller
, “
Social network plasticity decreases disease transmission in a eusocial insect
,”
Science
362
,
941
945
(
2018
).
23
V.
Papanikolaou
,
A.
Chrysovergis
,
V.
Ragos
,
E.
Tsiambas
,
S.
Katsinis
,
A.
Manoli
,
S.
Papouliakos
,
D.
Roukas
,
S.
Mastronikolis
,
D.
Peschos
,
A.
Batistatou
,
E.
Kyrodimos
, and
N.
Mastronikolis
, “
From delta to omicron: S1-RBD/S2 mutation/deletion equilibrium in SARS-CoV-2 defined variants
,”
Gene
814
,
146134
(
2022
).
24
M.
Becerra-Flores
and
T.
Cardozo
, “
SARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rate
,”
Int. J. Clin. Pract.
74
,
e13525
(
2020
).
25
H. M.
Zawbaa
,
H.
Osama
,
A.
El-Gendy
,
H.
Saeed
,
H. S.
Harb
,
Y. M.
Madney
,
M.
Abdelrahman
,
M.
Mohsen
,
A. M. A.
Ali
,
M.
Nicola
,
M. O.
Elgendy
,
I. A.
Ibrahim
, and
M. E. A.
Abdelrahim
, “
Effect of mutation and vaccination on spread, severity, and mortality of COVID-19 disease
,”
J. Med. Virol.
94
,
197
204
(
2022
).
26
A.
Bridier
,
P. C.
Piard
,
J.-C.
and
,
S.
Labarthe
,
F.
Dubois-Brissonnet
, and
R.
Briandet
, “
Spatial organization plasticity as an adaptive driver of surface microbial communities
,”
Front. Microbiol.
8
,
1364
(
2017
).
27
F. M.
Snowden
,
Epidemics and Society: From the Black Death to the Present
(
Yale University Press
,
New Haven and London
,
2019
).
28
J.
Tanimoto
,
Sociophysics Approach to Epidemics
(
Springer
,
Singapore
,
2021
).
29
R.
Pastor-Satorras
,
C.
Castellano
,
P.
Van Mieghem
, and
A.
Vespignani
, “
Epidemic processes in complex networks
,”
Rev. Mod. Phys.
87
,
925
979
(
2015
).
30
G.
Bonaccorsi
,
F.
Pierri
,
M.
Cinelli
,
A.
Flori
,
A.
Galeazzi
,
F.
Porcelli
,
A. L.
Schmidt
,
C. M.
Valensise
,
A.
Scala
,
W.
Quattrociocchi
, and
F.
Pammolli
, “
Economic and social consequences of human mobility restrictions under COVID-19
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
15530
15535
(
2020
).
31
E.
Rangel
,
B.
Moura
, and
J.
Menezes
, “
Combination of survival movement strategies in cyclic game systems during an epidemic
,”
Biosystems
217
,
104689
(
2022
).
32
J.
Menezes
,
B.
Moura
, and
E.
Rangel
, “
Adaptive survival movement strategy to local epidemic outbreaks in cyclic models
,”
J. Phys.: Complex.
3
,
045008
(
2022
).
33
J.
Menezes
,
S.
Batista
, and
E.
Rangel
, “
Spatial organisation plasticity reduces disease infection risk in rock–paper–scissors models
,”
Biosystems
221
,
104777
(
2022
).
34
J.
Menezes
,
B.
Ferreira
,
E.
Rangel
, and
B.
Moura
, “
Adaptive altruistic strategy in cyclic models during an epidemic
,”
Europhys. Lett.
140
,
57001
(
2022
).
35
L. B.
Shaw
and
I. B.
Schwartz
, “
Fluctuating epidemics on adaptive networks
,”
Phys. Rev. E
77
,
066101
(
2008
).
36
L. B.
Shaw
and
I. B.
Schwartz
, “
Enhanced vaccine control of epidemics in adaptive networks
,”
Phys. Rev. E
81
,
046120
(
2010
).
37
H. S.
Thilo Gross
,
Adaptive Networks Theory, Models and Applications
(
Springer Verlag
,
Berlin
,
2009
).
38
P.
Nicholson
,
N.
Mon-on
,
P.
Jaemwimol
,
P.
Tattiyapong
, and
W.
Surachetpong
, “
Coinfection of tilapia lake virus and Aeromonas hydrophila synergistically increased mortality and worsened the disease severity in tilapia (oreochromis spp.)
,”
Aquaculture
520
,
734746
(
2020
).
39
M.
Chapwanya
,
A.
Matusse
, and
Y.
Dumont
, “
On synergistic co-infection in crop diseases. The case of the maize lethal necrosis disease
,”
Appl. Math. Modell.
90
,
912
942
(
2021
).
40
T.
Yan
,
S.
Zhu
,
H.
Wang
,
C.
Li
,
Y.
Diao
, and
Y.
Tang
, “
Synergistic pathogenicity in sequential coinfection with fowl adenovirus type 4 and avian orthoreovirus
,”
Vet. Microbiol.
251
,
108880
(
2020
).
41
S.
Telfer
,
R.
Birtles
,
M.
Bennett
,
X.
Lambin
,
S.
Paterson
, and
M.
Begon
, “
Parasite interactions in natural populations: Insights from longitudinal data
,”
Parasitology
135
,
767
781
(
2008
).
42
M.
Singer
,
N.
Bulled
,
B.
Ostrach
, and
E.
Mendenhall
, “
Syndemics and the biosocial conception of health
,”
Lancet
389
,
941
950
(
2017
).
43
J. C.
Kash
,
K.-A.
Walters
,
A. S.
Davis
,
A.
Sandouk
,
L. M.
Schwartzman
,
B. W.
Jagger
,
D. S.
Chertow
,
L.
Qi
,
R. E.
Kuestner
,
A.
Ozinsky
, and
J. K.
Taubenberger
, “
Lethal synergism of 2009 pandemic H1N1 influenza virus and streptococcus pneumoniae coinfection is associated with loss of murine lung repair responses
,”
mBio
2
,
e00172–11
(
2011
).
44
C.
Yin
,
W.
Yang
,
J.
Meng
,
Y.
Lv
,
J.
Wang
, and
B.
Huang
, “
Co-infection of pseudomonas aeruginosa and Stenotrophomonas maltophilia in hospitalised pneumonia patients has a synergic and significant impact on clinical outcomes
,”
Eur. J. Clin. Microbiol. Infect. Dis.
36
,
2231
2235
(
2017
).
45
V.
Andreasen
and
A.
Pugliese
, “
Pathogen coexistence induced by density-dependent host mortality
,”
J. Theor. Biol.
177
,
159
165
(
1995
).
46
S.
Chen
,
Y.
Ran
,
H.
Huang
,
Z.
Wang
, and
K.-K.
Shang
, “
Epidemic dynamics of two-pathogen spreading for pairwise models
,”
Mathematics
10
,
1906
(
2022
).
47
R. M.
May
and
W. J.
Leonard
, “
Nonlinear aspects of competition between three species
,”
SIAM J. Appl. Math.
29
,
243
253
(
1975
).
48
P. P.
Avelino
,
D.
Bazeia
,
L.
Losano
, and
J.
Menezes
, “
von Neummann’s and related scaling laws in rock-paper-scissors-type games
,”
Phys. Rev. E
86
,
031119
(
2012
).
49
T. A.
Pereira
,
J.
Menezes
, and
L.
Losano
, “
Interface networks in models of competing species
,”
Int. J. Mod. Sim. Sci. Comp.
9
,
1850046
(
2018
).
50
J.
Menezes
and
B.
Moura
, “
Pattern formation and coarsening dynamics in apparent competition models
,”
Chaos Soliton. Fract.
157
,
111903
(
2022
).
51
P.
Avelino
,
J.
Oliveira
, and
C.
Martins
, “
Understanding domain wall network evolution
,”
Phys. Lett. B
610
,
1
8
(
2005
).
52
P. P.
Avelino
,
R.
Menezes
, and
J. C. R.
E. Oliveira
, “
Unified paradigm for interface dynamics
,”
Phys. Rev. E
83
,
011602
(
2011
).
53
A.
Roman
,
D.
Konrad
, and
M.
Pleimling
, “
Cyclic competition of four species: Domains and interfaces
,”
J. Stat. Mech.
7
,
P07014
(
2012
).
54
L. F.
Cugliandolo
, “
Topics in coarsening phenomena
,”
Physica A
389
,
4360
4373
(
2010
).
55
A.
Sicilia
,
J. J.
Arenzon
,
A. J.
Bray
, and
L. F.
Cugliandolo
, “
Domain growth morphology in curvature-driven two-dimensional coarsening
,”
Phys. Rev. E
76
,
061116
(
2007
).
56
P.
Roy
and
P.
Sen
, “
Interplay of interfacial noise and curvature-driven dynamics in two dimensions
,”
Phys. Rev. E
95
,
020101
(
2017
).
57
M. P. O.
Loureiro
,
J. J.
Arenzon
,
L. F.
Cugliandolo
, and
A.
Sicilia
, “
Curvature-driven coarsening in the two-dimensional Potts model
,”
Phys. Rev. E
81
,
021129
(
2010
).
58
M. J.
Oliveira
,
J. F. F.
Mendes
, and
M. A.
Santos
, “
Nonequilibrium spin models with Ising universal behaviour
,”
J. Phys. A: Math. Gen.
26
,
2317
(
1993
).
59
A.
Tartaglia
,
L. F.
Cugliandolo
, and
M.
Picco
, “
Coarsening and percolation in the kinetic 2D Ising model with spin exchange updates and the voter model
,”
J. Stat. Mech. Theory Exp.
2018
,
083202
(
2018
).
60
P. P.
Avelino
,
D.
Bazeia
,
L.
Losano
,
J.
Menezes
, and
B. F.
Oliveira
, “
Junctions and spiral patterns in generalized rock-paper-scissors models
,”
Phys. Rev. E
86
,
036112
(
2012
).
61
P. P.
Avelino
,
D.
Bazeia
,
L.
Losano
,
J.
Menezes
, and
B. F.
de Oliveira
, “
Interfaces with internal structures in generalized rock-paper-scissors models
,”
Phys. Rev. E
89
,
042710
(
2014
).
62
P. P.
Avelino
,
J.
Menezes
,
B. F.
de Oliveira
, and
T. A.
Pereira
, “
Expanding spatial domains and transient scaling regimes in populations with local cyclic competition
,”
Phys. Rev. E
99
,
052310
(
2019
).
63
P.
Avelino
,
D.
Bazeia
,
J.
Menezes
, and
B.
de Oliveira
, “
String networks in Lotka–Volterra competition models
,”
Phys. Lett. A
378
,
393
397
(
2014
).
64
P.
Avelino
,
D.
Bazeia
,
L.
Losano
,
J.
Menezes
, and
B.
de Oliveira
, “
String networks with junctions in competition models
,”
Phys. Lett. A
381
,
1014
1020
(
2017
).
65
J. B. C.
Jackson
and
L.
Buss
, “
The rock-scissors-paper game and the evolution of alternative male strategies
,”
Proc. Natl. Acad. Sci. U.S.A.
72
,
5160
5163
(
1975
).
66
S.
Islam
,
A.
Mondal
,
M.
Mobilia
,
S.
Bhattacharyya
, and
C.
Hens
, “
Effect of mobility in the rock-paper-scissor dynamics with high mortality
,”
Phys. Rev. E
105
,
014215
(
2022
).
67
B.
Sinervo
and
C. M.
Lively
, “
The rock-scissors-paper game and the evolution of alternative male strategies
,”
Nature
380
,
240
243
(
1996
).
You do not currently have access to this content.