The mammalian circadian system comprises a network of endogenous oscillators, spanning from the central clock in the brain to peripheral clocks in other organs. These clocks are tightly coordinated to orchestrate rhythmic physiological and behavioral functions. Dysregulation of these rhythms is a hallmark of aging, yet it remains unclear how age-related changes lead to more easily disrupted circadian rhythms. Using a two-population model of coupled oscillators that integrates the central clock and the peripheral clocks, we derive simple mean-field equations that can capture many aspects of the rich behavior found in the mammalian circadian system. We focus on three age-associated effects that have been posited to contribute to circadian misalignment: attenuated input from the sympathetic pathway, reduced responsiveness to light, and a decline in the expression of neurotransmitters. We find that the first two factors can significantly impede re-entrainment of the clocks following perturbation, while a weaker coupling within the central clock does not affect the recovery rate. Moreover, using our minimal model, we demonstrate the potential of using the feed–fast cycle as an effective intervention to accelerate circadian re-entrainment. These results highlight the importance of peripheral clocks in regulating the circadian rhythm and provide fresh insights into the complex interplay between aging and the resilience of the circadian system.

1.
C.
Dibner
,
U.
Schibler
, and
U.
Albrecht
, “
The mammalian circadian timing system: Organization and coordination of central and peripheral clocks
,”
Annu. Rev. Physiol.
72
,
517
549
(
2010
).
2.
S.
Honma
, “
The mammalian circadian system: A hierarchical multi-oscillator structure for generating circadian rhythm
,”
J. Physiol. Sci.
68
,
207
219
(
2018
).
3.
M.
Stratmann
and
U.
Schibler
, “
Properties, entrainment, and physiological functions of mammalian peripheral oscillators
,”
J. Biol. Rhythms
21
,
494
506
(
2006
).
4.
S. A.
Brown
and
A.
Azzi
, “
Peripheral circadian oscillators in mammals
,”
Circadian Clocks
217
,
45
66
(
2013
).
5.
G.
Costa
, “
The impact of shift and night work on health
,”
Appl. Ergon.
27
,
9
16
(
1996
).
6.
S. M.
Rajaratnam
and
J.
Arendt
, “
Health in a 24-h society
,”
Lancet
358
,
999
1005
(
2001
).
7.
M. R.
Smith
and
C. I.
Eastman
, “
Shift work: Health, performance and safety problems, traditional countermeasures, and innovative management strategies to reduce circadian misalignment
,”
Nat. Sci. Sleep
4
,
111
(
2012
).
8.
D. B.
Boivin
,
P.
Boudreau
, and
A.
Kosmadopoulos
, “
Disturbance of the circadian system in shift work and its health impact
,”
J. Biol. Rhythms
37
,
3
28
(
2022
).
9.
S. L.
Chellappa
,
J.
Qian
,
N.
Vujovic
,
C. J.
Morris
,
A.
Nedeltcheva
,
H.
Nguyen
,
N.
Rahman
,
S. W.
Heng
,
L.
Kelly
,
K.
Kerlin-Monteiro
et al., “
Daytime eating prevents internal circadian misalignment and glucose intolerance in night work
,”
Sci. Adv.
7
,
eabg9910
(
2021
).
10.
M. A.
Hofman
and
D. F.
Swaab
, “
Living by the clock: The circadian pacemaker in older people
,”
Ageing Res. Rev.
5
,
33
51
(
2006
).
11.
T. J.
Nakamura
,
N. N.
Takasu
, and
W.
Nakamura
, “
The suprachiasmatic nucleus: Age-related decline in biological rhythms
,”
J. Physiol. Sci.
66
,
367
374
(
2016
).
12.
T. J.
Nakamura
,
W.
Nakamura
,
S.
Yamazaki
,
T.
Kudo
,
T.
Cutler
,
C. S.
Colwell
, and
G. D.
Block
, “
Age-related decline in circadian output
,”
J. Neurosci.
31
,
10201
10205
(
2011
).
13.
S.
Yamazaki
,
M.
Straume
,
H.
Tei
,
Y.
Sakaki
,
M.
Menaker
, and
G. D.
Block
, “
Effects of aging on central and peripheral mammalian clocks
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
10801
10806
(
2002
).
14.
M. R.
Buijink
and
S.
Michel
, “
A multi-level assessment of the bidirectional relationship between aging and the circadian clock
,”
J. Neurochem.
157
,
73
94
(
2021
).
15.
R. A.
DeFronzo
, “
Glucose intolerance and aging
,”
Diabetes Care
4
,
493
501
(
1981
).
16.
M. A.
Hofman
, “
The human circadian clock and aging
,”
Chronobiol. Int.
17
,
245
259
(
2000
).
17.
W.
Charman
, “
Age, lens transmittance, and the possible effects of light on melatonin suppression
,”
Ophthalmic Physiol. Optics
23
,
181
187
(
2003
).
18.
M. T.
Sellix
,
J. A.
Evans
,
T. L.
Leise
,
O.
Castanon-Cervantes
,
D. D.
Hill
,
P.
DeLisser
,
G. D.
Block
,
M.
Menaker
, and
A. J.
Davidson
, “
Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators
,”
J. Neurosci.
32
,
16193
16202
(
2012
).
19.
E.
Klerman
,
J.
Duffy
,
D.-J.
Dijk
, and
C.
Czeisler
, “
Circadian phase resetting in older people by ocular bright light exposure
,”
J. Invest. Med.
49
,
30
40
(
2001
).
20.
T. H.
Monk
, “
Aging human circadian rhythms: Conventional wisdom may not always be right
,”
J. Biol. Rhythms.
20
,
366
374
(
2005
).
21.
J. F.
Duffy
,
K.-M.
Zitting
, and
E. D.
Chinoy
, “
Aging and circadian rhythms
,”
Sleep Med. Clinics
10
,
423
434
(
2015
).
22.
J.-C.
Leloup
and
A.
Goldbeter
, “
Toward a detailed computational model for the mammalian circadian clock
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
7051
7056
(
2003
).
23.
S.
Becker-Weimann
,
J.
Wolf
,
H.
Herzel
, and
A.
Kramer
, “
Modeling feedback loops of the mammalian circadian oscillator
,”
Biophys. J.
87
,
3023
3034
(
2004
).
24.
S.
Bernard
,
D.
Gonze
,
B.
Čajavec
,
H.
Herzel
, and
A.
Kramer
, “
Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus
,”
PLoS Comput. Biol.
3
,
e68
(
2007
).
25.
T.-L.
To
,
M. A.
Henson
,
E. D.
Herzog
, and
F. J.
Doyle III
, “
A molecular model for intercellular synchronization in the mammalian circadian clock
,”
Biophys. J.
92
,
3792
3803
(
2007
).
26.
C.
Vasalou
and
M. A.
Henson
, “
A multiscale model to investigate circadian rhythmicity of pacemaker neurons in the suprachiasmatic nucleus
,”
PLoS Comput. Biol.
6
,
e1000706
(
2010
).
27.
M.
Hafner
,
H.
Koeppl
, and
D.
Gonze
, “
Effect of network architecture on synchronization and entrainment properties of the circadian oscillations in the suprachiasmatic nucleus
,”
PLoS Comput. Biol.
8
,
e1002419
(
2012
).
28.
J. K.
Kim
,
Z. P.
Kilpatrick
,
M. R.
Bennett
, and
K.
Josić
, “
Molecular mechanisms that regulate the coupled period of the mammalian circadian clock
,”
Biophys. J.
106
,
2071
2081
(
2014
).
29.
J. K.
Kim
, “
Protein sequestration vs hill-type repression in circadian clock models
,”
IET Syst. Biol.
10
,
125
135
(
2016
).
30.
K.
Abitbol
,
S.
Debiesse
,
F.
Molino
,
P.
Mesirca
,
I.
Bidaud
,
Y.
Minami
,
M. E.
Mangoni
,
K.
Yagita
,
P.
Mollard
, and
X.
Bonnefont
, “
Clock-dependent and system-driven oscillators interact in the suprachiasmatic nuclei to pace mammalian circadian rhythms
,”
PLoS One
12
,
e0187001
(
2017
).
31.
L. S.
Brown
and
F. J.
Doyle
, III
, “
A dual-feedback loop model of the mammalian circadian clock for multi-input control of circadian phase
,”
PLoS Comput. Biol.
16
,
e1008459
(
2020
).
32.
V.
Pilorz
,
M.
Astiz
,
K. O.
Heinen
,
O.
Rawashdeh
, and
H.
Oster
, “
The concept of coupling in the mammalian circadian clock network
,”
J. Mol. Biol.
432
,
3618
3638
(
2020
).
33.
X.
Yao
,
B. L.
Heidebrecht
,
J.
Chen
, and
J. J.
Tyson
, “
Mathematical analysis of robustness of oscillations in models of the mammalian circadian clock
,”
PLoS Comput. Biol.
18
,
e1008340
(
2022
).
34.
J.
Garcia-Ojalvo
,
M. B.
Elowitz
, and
S. H.
Strogatz
, “
Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
10955
10960
(
2004
).
35.
D.
Gonze
,
S.
Bernard
,
C.
Waltermann
,
A.
Kramer
, and
H.
Herzel
, “
Spontaneous synchronization of coupled circadian oscillators
,”
Biophys. J.
89
,
120
129
(
2005
).
36.
H.
Fukuda
,
N.
Nakamichi
,
M.
Hisatsune
,
H.
Murase
, and
T.
Mizuno
, “
Synchronization of plant circadian oscillators with a phase delay effect of the vein network
,”
Phys. Rev. Lett.
99
,
098102
(
2007
).
37.
E.
Ullner
,
J.
Buceta
,
A.
Díez-Noguera
, and
J.
García-Ojalvo
, “
Noise-induced coherence in multicellular circadian clocks
,”
Biophys. J.
96
,
3573
3581
(
2009
).
38.
N.
Komin
,
A. C.
Murza
,
E.
Hernández-García
, and
R.
Toral
, “
Synchronization and entrainment of coupled circadian oscillators
,”
Interface Focus
1
,
167
176
(
2011
).
39.
C.
Gu
,
J.
Xu
,
J.
Rohling
,
H.
Yang
, and
Z.
Liu
, “
Noise induces oscillation and synchronization of the circadian neurons
,”
PLoS One
10
,
e0145360
(
2015
).
40.
C.
Gu
,
X.
Liang
,
H.
Yang
, and
J. H.
Rohling
, “
Heterogeneity induces rhythms of weakly coupled circadian neurons
,”
Sci. Rep.
6
,
1
10
(
2016
).
41.
K. M.
Hannay
,
D. B.
Forger
, and
V.
Booth
, “
Macroscopic models for networks of coupled biological oscillators
,”
Sci. Adv.
4
,
e1701047
(
2018
).
42.
K. M.
Hannay
,
V.
Booth
, and
D. B.
Forger
, “
Macroscopic models for human circadian rhythms
,”
J. Biol. Rhythms
34
,
658
671
(
2019
).
43.
K. M.
Hannay
,
D. B.
Forger
, and
V.
Booth
, “
Seasonality and light phase-resetting in the mammalian circadian rhythm
,”
Sci. Rep.
10
,
1
15
(
2020
).
44.
D.
Zhang
,
Y.
Cao
,
Q.
Ouyang
, and
Y.
Tu
, “
The energy cost and optimal design for synchronization of coupled molecular oscillators
,”
Nature Phys.
16
,
95
100
(
2020
).
45.
J.
Zhou
,
H.
Wang
, and
Q.
Ouyang
, “
Network rewiring and plasticity promotes synchronization of suprachiasmatic nucleus neurons
,”
Chaos
32
,
023101
(
2022
).
46.
A. J.
Davidson
,
O.
Castanon-Cervantes
,
T. L.
Leise
,
P. C.
Molyneux
, and
M. E.
Harrington
, “
Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system
,”
Eur. J. Neurosci.
29
,
171
180
(
2009
).
47.
S.
Kiessling
,
G.
Eichele
, and
H.
Oster
, “
Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag
,”
J. Clin. Investigation
120
,
2600
2609
(
2010
).
48.
A.
Kohsaka
,
A. D.
Laposky
,
K. M.
Ramsey
,
C.
Estrada
,
C.
Joshu
,
Y.
Kobayashi
,
F. W.
Turek
, and
J.
Bass
, “
High-fat diet disrupts behavioral and molecular circadian rhythms in mice
,”
Cell Metab.
6
,
414
421
(
2007
).
49.
Y.
Tahara
,
M.
Otsuka
,
Y.
Fuse
,
A.
Hirao
, and
S.
Shibata
, “
Refeeding after fasting elicits insulin-dependent regulation of Per2 and Rev-erb α with shifts in the liver clock
,”
J. Biol. Rhythms.
26
,
230
240
(
2011
).
50.
J. A.
Mohawk
,
C. B.
Green
, and
J. S.
Takahashi
, “
Central and peripheral circadian clocks in mammals
,”
Annu. Rev. Neurosci.
35
,
445
462
(
2012
).
51.
H.
Kuroda
,
Y.
Tahara
,
K.
Saito
,
N.
Ohnishi
,
Y.
Kubo
,
Y.
Seo
,
M.
Otsuka
,
Y.
Fuse
,
Y.
Ohura
,
A.
Hirao
, and
S.
Shibata
, “
Meal frequency patterns determine the phase of mouse peripheral circadian clocks
,”
Sci. Rep.
2
,
711
(
2012
).
52.
R.
Dallmann
,
A. U.
Viola
,
L.
Tarokh
,
C.
Cajochen
, and
S. A.
Brown
, “
The human circadian metabolome
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
2625
2629
(
2012
).
53.
S. H.
Strogatz
, “
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
,”
Phys. D
143
,
1
20
(
2000
).
54.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
,
037113
(
2008
).
55.
E.
Ott
and
T. M.
Antonsen
, “
Long time evolution of phase oscillator systems
,”
Chaos
19
,
023117
(
2009
).
56.
W. S.
Lee
,
E.
Ott
, and
T. M.
Antonsen
, “
Large coupled oscillator systems with heterogeneous interaction delays
,”
Phys. Rev. Lett.
103
,
044101
(
2009
).
57.
T.
Kotwal
,
X.
Jiang
, and
D. M.
Abrams
, “
Connecting the Kuramoto model and the chimera state
,”
Phys. Rev. Lett.
119
,
264101
(
2017
).
58.
J. R.
Engelbrecht
and
R.
Mirollo
, “
Is the Ott-Antonsen manifold attracting?
,”
Phys. Rev. Res.
2
,
023057
(
2020
).
59.
Z.
Lu
,
K.
Klein-Cardeña
,
S.
Lee
,
T. M.
Antonsen
,
M.
Girvan
, and
E.
Ott
, “
Resynchronization of circadian oscillators and the east-west asymmetry of jet-lag
,”
Chaos
26
,
094811
(
2016
).
60.
A.
Song
,
T.
Severini
, and
R.
Allada
, “
How jet lag impairs major league baseball performance
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
1407
1412
(
2017
).
61.
Y.
Tahara
,
Y.
Takatsu
,
T.
Shiraishi
,
Y.
Kikuchi
,
M.
Yamazaki
,
H.
Motohashi
,
A.
Muto
,
H.
Sasaki
,
A.
Haraguchi
,
D.
Kuriki
,
T. J.
Nakamura
, and
S.
Shibata
, “
Age-related circadian disorganization caused by sympathetic dysfunction in peripheral clock regulation
,”
npj Aging Mech. Dis.
3
,
1
11
(
2017
).
62.
D.
De Wied
and
J.
Van Ree
, “
Neuropeptides, mental performance and aging
,”
Life Sci.
31
,
709
719
(
1982
).
63.
S.-H.
Yoo
,
S.
Yamazaki
,
P. L.
Lowrey
,
K.
Shimomura
,
C. H.
Ko
,
E. D.
Buhr
,
S. M.
Siepka
,
H.-K.
Hong
,
W. J.
Oh
,
O. J.
Yoo
,
M.
Menaker
, and
J. S.
Takahashi
, “
PERIOD2: LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
5339
5346
(
2004
).
64.
B. A.
Kent
,
S. A.
Rahman
,
M. A.
St. Hilaire
,
L. K.
Grant
,
M.
Rüger
,
C. A.
Czeisler
, and
S. W.
Lockley
, “
Circadian lipid and hepatic protein rhythms shift with a phase response curve different than melatonin
,”
Nat. Commun.
13
,
681
(
2022
).
65.
T. H.
Monk
,
D. J.
Buysse
,
J.
Carrier
, and
D. J.
Kupfer
, “
Inducing jet-lag in older people: Directional asymmetry
,”
J. Sleep Res.
9
,
101
116
(
2000
).
66.
S.
Benloucif
,
K.
Green
,
M.
L’Hermite-Balériaux
,
S.
Weintraub
,
L.
Wolfe
, and
P.
Zee
, “
Responsiveness of the aging circadian clock to light
,”
Neurobiol. Aging
27
,
1870
1879
(
2006
).
67.
J. F.
Duffy
,
J. M.
Zeitzer
, and
C. A.
Czeisler
, “
Decreased sensitivity to phase-delaying effects of moderate intensity light in older subjects
,”
Neurobiol. Aging
28
,
799
807
(
2007
).
68.
C. A.
Wolff
,
M. A.
Gutierrez-Monreal
,
L.
Meng
,
X.
Zhang
,
L. G.
Douma
,
H. M.
Costello
,
C. M.
Douglas
,
E.
Ebrahimi
,
B. R.
Alava
,
A. R.
Morris
et al., “Defining the age-dependent and tissue-specific circadian transcriptome in male mice,” bioRxiv (2022).
69.
H.
Oike
,
M.
Sakurai
,
K.
Ippoushi
, and
M.
Kobori
, “
Time-fixed feeding prevents obesity induced by chronic advances of light/dark cycles in mouse models of jet-lag/shift work
,”
Biochem. Biophys. Res. Commun.
465
,
556
561
(
2015
).
70.
J.
Lopez-Minguez
,
P.
Gómez-Abellán
, and
M.
Garaulet
, “
Timing of breakfast, lunch, and dinner. Effects on obesity and metabolic risk
,”
Nutrients
11
,
2624
(
2019
).
71.
H. L.
Boege
,
M. Z.
Bhatti
, and
M.-P.
St-Onge
, “
Circadian rhythms and meal timing: Impact on energy balance and body weight
,”
Curr. Opin. Biotechnol.
70
,
1
6
(
2021
).
72.
D.
Jakubowicz
,
J.
Wainstein
,
S.
Tsameret
, and
Z.
Landau
, “
Role of high energy breakfast “big breakfast diet” in clock gene regulation of postprandial hyperglycemia and weight loss in type 2 diabetes
,”
Nutrients
13
,
1558
(
2021
).
73.
N. C.
Bush
,
H. E.
Resuehr
,
L. L.
Goree
,
J. L.
Locher
,
M. S.
Bray
,
T.
Soleymani
, and
B. A.
Gower
, “
A high-fat compared with a high-carbohydrate breakfast enhances 24-hour fat oxidation in older adults
,”
J. Nutr.
148
,
220
226
(
2018
).
74.
C.
Escobar
,
E.
Espitia-Bautista
,
M. A.
Guzmán-Ruiz
,
N. N.
Guerrero-Vargas
,
M.
Á. Hernández-Navarrete
,
M.
Ángeles-Castellanos
,
B.
Morales-Pérez
, and
R. M.
Buijs
, “
Chocolate for breakfast prevents circadian desynchrony in experimental models of jet-lag and shift-work
,”
Sci. Rep.
10
,
6243
(
2020
).
75.
Y.
Huang
,
C.
Mayer
,
P.
Cheng
,
A.
Siddula
,
H. J.
Burgess
,
C.
Drake
,
C.
Goldstein
,
O.
Walch
, and
D. B.
Forger
, “
Predicting circadian phase across populations: A comparison of mathematical models and wearable devices
,”
Sleep
44
,
zsab126
(
2021
).
76.
A. B.
Webb
,
S. R.
Taylor
,
K. A.
Thoroughman
,
F. J.
Doyle
, III
, and
E. D.
Herzog
, “
Weakly circadian cells improve resynchrony
,”
PLoS Comput. Biol.
8
,
e1002787
(
2012
).
77.
Y.
Tahara
,
S.
Aoyama
, and
S.
Shibata
, “
The mammalian circadian clock and its entrainment by stress and exercise
,”
J. Physiol. Sci.
67
,
1
10
(
2017
).
78.
J. K.
Kim
,
D.
Forger
,
M.
Marconi
,
D.
Wood
,
A.
Doran
,
T.
Wager
,
C.
Chang
, and
K.
Walton
, “
Modeling and validating chronic pharmacological manipulation of circadian rhythms
,”
CPT: Pharmacometrics Syst. Pharmacol.
2
,
1
11
(
2013
).
79.
T.
Shirakawa
,
S.
Honma
,
Y.
Katsuno
,
H.
Oguchi
, and
K.-I.
Honma
, “
Synchronization of circadian firing rhythms in cultured rat suprachiasmatic neurons
,”
Eur. J. Neurosci.
12
,
2833
2838
(
2000
).
80.
T.
Shirakawa
,
S.
Honma
, and
K.-I.
Honma
, “
Multiple oscillators in the suprachiasmatic nucleus
,”
Chronobiol. Int.
18
,
371
387
(
2001
).

Supplementary Material

You do not currently have access to this content.