Many real-world complex systems rely on cluster synchronization to function properly. A cluster of nodes exhibits synchronous behavior, while others behave erratically. Predicting the emergence of these clusters and understanding the mechanism behind their structure and variation in response to a parameter change is a daunting task in networks that lack symmetry. We unravel the mechanism for the emergence of cluster synchronization in heterogeneous random networks. We develop heterogeneous mean-field approximation together with a self-consistent theory to determine the onset and stability of the cluster. Our analysis shows that cluster synchronization occurs in a wide variety of heterogeneous networks, node dynamics, and coupling functions. The results could lead to a new understanding of the dynamical behavior of networks ranging from neural to social.

1.
P.
Yadav
,
J. A.
McCann
, and
T.
Pereira
,
IEEE Internet Things J.
4
,
2058
(
2017
).
2.
A. T.
Winfree
,
The Geometry of Biological Time
(
Springer Science & Business Media
,
2001
), Vol. 12.
3.
M.
Sebek
,
R.
Tönjes
, and
I. Z.
Kiss
,
Phys. Rev. Lett.
116
,
068701
(
2016
).
4.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Courier Corporation
,
2003
).
5.
D.
Eroglu
,
J. S. W.
Lamb
, and
T.
Pereira
,
Contemp. Phys.
58
,
207
(
2017
).
6.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
,
Phys. Rep.
469
,
93
(
2008
).
7.
V.
Flunkert
,
S.
Yanchuk
,
T.
Dahms
, and
E.
Schöll
,
Phys. Rev. Lett.
105
,
254101
(
2010
).
8.
O. E.
Omel’chenko
and
M.
Wolfrum
,
Phys. Rev. Lett.
109
,
164101
(
2012
).
9.
R.
Tönjes
,
C. E.
Fiore
, and
T.
Pereira
,
Nat. Commun.
12
,
72
(
2021
).
10.
C.
Hammond
,
H.
Bergman
, and
P.
Brown
,
Trends Neurosci.
30
,
357
(
2007
).
11.
K.
Lehnertz
,
S.
Bialonski
,
M.-T.
Horstmann
,
D.
Krug
,
A.
Rothkegel
,
M.
Staniek
, and
T.
Wagner
,
J. Neurosci. Methods
183
,
42
(
2009
).
12.
E.
Dey
,
J.
Hossain
,
N.
Roy
, and
C.
Busart
, in 2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS) (IEEE, 2022), pp. 334–341.
13.
A.
Schnitzler
and
J.
Gross
,
Nat. Rev. Neurosci.
6
,
285
(
2005
).
14.
L. M.
Pecora
,
F.
Sorrentino
,
A. M.
Hagerstrom
,
T. E.
Murphy
, and
R.
Roy
,
Nat. Commun.
5
,
4079
(
2014
).
15.
A. B.
Siddique
,
L.
Pecora
,
J. D.
Hart
, and
F.
Sorrentino
,
Phys. Rev. E
97
,
042217
(
2018
).
16.
A.
Bayani
,
F.
Nazarimehr
,
S.
Jafari
,
K.
Kovalenko
,
G.
Contreras-Aso
,
K.
Alfaro-Bittner
,
R. J.
Sánchez-García
, and
S.
Boccaletti
, “The transition to synchronization of networked systems,” arXiv:2303.08668 (2023).
17.
P.
Bonifazi
,
M.
Goldin
,
M. A.
Picardo
et al.,
Science
326
,
1419
(
2009
).
19.
P. N.
McGraw
and
M.
Menzinger
,
Phys. Rev. E
72
,
015101
(
2005
).
20.
J.
Gómez-Gardenes
,
Y.
Moreno
, and
A.
Arenas
,
Phys. Rev. Lett.
98
,
034101
(
2007
).
22.
T.
Pereira
,
S.
van Strien
, and
M.
Tanzi
,
J. Eur. Math. Soc.
22
,
2183
(
2020
).
23.
M.
Viana
,
Stochastic Dynamics of Deterministic Systems
(
IMPA
,
Rio de Janeiro
,
1997
), Vol. 21.
24.
F.
Chung
and
L.
Lu
,
Complex Graphs and Networks
, CBMS Regional Conference Series in Mathematics (
American Mathematical Society
,
Providence, RI
,
2006
), ISBN: 0821836579.
25.
A. S.
Pikovsky
,
Izv. Vysš. Učebn. Zaved.
29
, 78–87 (
2021
).
26.
H. M.
Mendonca
,
R.
Tönjes
, and
T.
Pereira
,
Entropy
25
,
983
(
2023
).
You do not currently have access to this content.