Typically, the period-doubling bifurcations exhibited by nonlinear dissipative systems are observed when varying systems’ parameters. In contrast, the period-doubling bifurcations considered in the current research are induced by changing the initial conditions, whereas parameter values are fixed. Thus, the studied bifurcations can be classified as the period-doubling bifurcations without parameters. Moreover, we show a cascade of the period-doubling bifurcations without parameters, resulting in a transition to deterministic chaos. The explored effects are demonstrated by means of numerical modeling on an example of a modified Anishchenko–Astakhov self-oscillator where the ability to exhibit bifurcations without parameters is associated with the properties of a memristor. Finally, we compare the dynamics of the ideal-memristor-based oscillator with the behavior of a model taking into account the memristor forgetting effect.

1.
E.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
2.
O.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
398
(
1976
).
3.
T.
Matsumoto
, “
A chaotic attractor from Chua’s circuit
,”
IEEE Trans. Circuits Syst.
31
,
1055
1058
(
1984
).
4.
T.
Matsumoto
,
L.
Chua
, and
M.
Komuro
, “
The double scroll
,”
IEEE Trans. Circuits Syst.
32
,
797
818
(
1985
).
5.
V. S.
Anishchenko
and
V.
Astakhov
, “
Experimental study of the mechanism of the appearance and the structure of a strange attractor in an oscillator with inertial nonlinearity
,”
Radiotekh. Elektron.
28
,
1109
1115
(
1983
) (in Russian).
6.
V.
Anishchenko
,
Dynamical Chaos—Models and Experiments
(
World Scientific
,
1995
).
7.
K.
Ikeda
, “
Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system
,”
Opt. Commun.
30
,
257
261
(
1979
).
8.
K.
Ikeda
,
H.
Daido
, and
O.
Akimoto
, “
Optical turbulence: Chaotic behavior of transmitted light from a ring cavity
,”
Phys. Rev. Lett.
45
,
709
712
(
1980
).
9.
M.
Mackey
and
L.
Glass
, “
Oscillation and chaos in physiological control systems
,”
Science
197
,
287
289
(
1977
).
10.
K.
Lehnertz
,
C. E.
Elger
,
J.
Arnhold
, and
P.
Grassberger
,
Chaos in Brain?
(
World Scientific
,
2000
).
11.
M.
Rabinovich
and
H.
Abarbanel
, “
The role of chaos in neural systems
,”
Neuroscience
87
,
5
14
(
1998
).
12.
W.
Freeman
, “
Tutorial on neurobiology: From single neuron to brain chaos
,”
Int. J. Bifurcat. Chaos
2
,
451
482
(
1992
).
13.
Chaos in Chemistry and Biochemistry, edited by R. Field and L. Györgyi (World Scientific, 1993).
14.
S.
Scott
,
Oscillations, Waves, and Chaos in Chemical Kinetics
(
Oxford University Press
,
1994
).
15.
C.
Pahl-Wostl
,
The Dynamic Nature of Ecosystems: Chaos and Order Entwined
(
Wiley
,
1995
).
16.
J.
Cushing
,
R.
Costantino
,
R.
Dennis
,
B.
Desharnais
, and
S.
Henson
,
Chaos in Ecology: Experimental Nonlinear Dynamics
(
Academic Press
,
2002
).
17.
A.
Medvinskii
,
S.
Petrovskii
,
I.
Tikhonova
,
D.
Tikhonov
,
B.
Li
,
E.
Venturino
,
H.
Malchow
, and
G.
Ivanitskii
, “
Spatio-temporal pattern formation, fractals, and chaos in conceptual ecological models as applied to coupled plankton-fish dynamics
,”
Phys. Usp.
45
,
27
57
(
2002
).
18.
P.
Mitkowski
,
Mathematical Structures of Ergodicity and Chaos in Population Dynamics
(
Springer
,
2021
).
19.
S.
Gokhale
,
A.
Conwill
,
T.
Ranjan
, and
J.
Gore
, “
Migration alters oscillatory dynamics and promotes survival in connected bacterial populations
,”
Nat. Commun.
9
,
5273
(
2018
).
20.
E.
Hopf
,
M.
Derstine
,
H. M.
Gibbs
, and
M.
Rushford
,
Chaos in Optics
(
Springer
,
1984
), pp. 67–79.
21.
Instabilities and Chaos in Quantum Optics, Springer Series in Synergetics, edited by F. Arecchi and R. Harrison (Springer, 1987), Vol. 34.
22.
J.
Ohtsudo
,
Semiconductor Lasers
(
Springer
,
2013
).
23.
L.
Fan
,
X.
Yan
,
H.
Wang
, and
L.
Wang
, “
Real-time observation and control of optical chaos
,”
Sci. Adv.
7
,
eabc8448
(
2021
).
24.
M.
Wyk
and
W.-H.
Steeb
,
Chaos in Electronics
(
Springer
,
1997
).
25.
K.
Aoki
,
Nonlinear Dynamics and Chaos in Semiconductors
(
CRC Press
,
2000
).
26.
E.
Schöll
,
Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors
(
Cambridge University Press
,
2001
).
27.
Chaos in Circuits and Systems, edited by G. Chen and T. Ueta (World Scientific, 2002).
28.
D.
Biswas
and
T.
Banerjee
,
Time-delayed Chaotic Dynamical Systems
(
Springer
,
2018
).
29.
W.
Horton
and
Y.-H.
Ichikawa
,
Chaos and Structures in Nonlinear Plasmas
(
World Scientific
,
1996
).
30.
Y.
Elskens
and
D.
Escande
,
Microscopic Dynamics of Plasmas and Chaos
(
CRC Press
,
2001
).
31.
D.
Turcotte
,
Fractals and Chaos in Geology and Geophysics
(
Cambridge University Press
,
1997
).
32.
W.
Baumol
and
J.
Benhabib
, “
Chaos: Significance, mechanism, and economic applications
,”
J. Econ. Perspect.
3
,
77
105
(
1989
).
33.
R.
Day
, “
The emergence of chaos from classical economic growth
,”
Q. J. Econ.
98
,
201
213
(
1983
).
34.
H.-W.
Lorenz
,
Nonlinear Dynamical Economics and Chaotic Motion
(
Springer
,
1989
).
35.
R.
Goodwin
,
Chaotic Economic Dynamics
(
Oxford University Press
,
1990
).
36.
J.
Farmer
, “
Chaotic attractors of an infinite-dimensional dynamical system
,”
Physica D
4
,
366
393
(
1982
).
37.
M.
Lakshmanan
and
D.
Senthilkumar
,
Dynamics of Nonlinear Time-Delay Systems
(
Springer
,
2011
).
38.
W.
Ebeling
,
H.
Herzel
,
W.
Richert
, and
L.
Schimansky-Geier
, “
Influence of noise on Duffing-Van der Pol oscillators
,”
Z. Angew. Math. Mech.
66
,
141
146
(
1986
).
39.
L.
Schimansky-Geier
and
H.
Herzel
, “
Positive Lyapunov exponents in the Kramers oscillator
,”
J. Stat. Phys.
70
,
141
147
(
1993
).
40.
I.
Percival
, “
Chaos in Hamiltonian systems
,”
Proc. R. Soc. London A
413
,
131
144
(
1987
).
41.
H.
Dankowicz
,
Chaotic Dynamics in Hamiltonian Systems
(
World Scientific
,
1997
).
42.
G.
Leonov
and
N.
Kuznetsov
, “
Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits
,”
Int. J. Bifurcat. Chaos
23
,
1330002
(
2013
).
43.
V.-T.
Pham
,
C.
Volos
,
S.
Jafari
, and
T.
Kapitaniak
, “
Coexistence of hidden chaotic attractors in a novel no-equilibrium system
,”
Nonlinear Dyn.
87
,
2001
2010
(
2017
).
44.
Chaotic Systems with Multistability and Hidden Attractors, edited by X. Wang, N. Kuznetsov, and G. Chen (Springer, 2021).
45.
K.
Kaneko
, “
Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of defect and pattern competition intermettency
,”
Physica D
34
,
1
41
(
1989
).
46.
B.
Fiedler
,
S.
Liebscher
, and
J.
Alexander
, “
Generic Hopf bifurcation from lines of equilibria without parameters: I. Theory
,”
J. Differ. Equ.
167
,
16
35
(
2000
).
47.
B.
Fiedler
and
S.
Liebscher
, “
Hopf bifurcation from lines of equilibria without parameters: II. Systems of viscous hyperbolic balance laws
,”
SIAM J. Math. Anal.
31
,
1396
1404
(
2000
).
48.
B.
Fiedler
,
S.
Liebscher
, and
J.
Alexander
, “
Generic Hopf bifurcation from lines of equilibria without parameters: III. Binary oscillators
,”
Int. J. Bifurcat. Chaos
10
,
1613
1621
(
2000
).
49.
S.
Liebscher
, Bifurcation Without Parameters, Lectures Notes in Mathematics (Springer International Publishing, 2015), Vol. 2117.
50.
R.
Riaza
, “
Manifolds of equilibria and bifurcations without parameters in memristive circuits
,”
SIAM J. Appl. Math.
72
,
877
896
(
2012
).
51.
F.
Corinto
,
M.
Forti
, and
L.
Chua
,
Nonlinear Circuits and Systems with Memristors
(
Springer
,
2020
).
52.
R.
Riaza
, “
Transcritical bifurcation without parameters in memristive circuits
,”
SIAM J. Appl. Math.
78
,
395
417
(
2018
).
53.
I.
Korneev
,
A.
Slepnev
,
A.
Zakharova
,
T.
Vadivasova
, and
V.
Semenov
, “
Generalized model for steady-state bifurcations without parameters in memristor-based oscillators with lines of equilibria
,”
Nonlinear Dyn.
111
,
1235
1243
(
2023
).
54.
M.
Messias
,
C.
Nespoli
, and
V.
Botta
, “
Hopf bifurcation from lines of equilibria without parameters in memristor oscillators
,”
Int. J. Bifurcat. Chaos
20
,
437
450
(
2010
).
55.
V.
Botta Pirani
,
C.
Néspoli
, and
M.
Messias
, “
Mathematical analysis of a third-order memristor-based Chua’s oscillator
,”
Trends Comput. Appl. Math.
12
,
91
99
(
2011
).
56.
V.
Semenov
,
I.
Korneev
,
P.
Arinushkin
,
G.
Strelkova
,
T.
Vadivasova
, and
V.
Anishchenko
, “
Numerical and experimental studies of attractors in memristor-based Chua’s oscillator with a line of equilibria. Noise-induced effects
,”
Eur. Phys. J. Spec. Top.
224
,
1553
1561
(
2015
).
57.
I.
Korneev
,
T.
Vadivasova
, and
V.
Semenov
, “
Hard and soft excitation of oscillations in memristor-based oscillators with a line of equilibria
,”
Nonlinear Dyn.
89
,
2829
2843
(
2017
).
58.
I.
Korneev
and
V.
Semenov
, “
Andronov–Hopf bifurcation with and without parameter in a cubic memristor oscillator with a line of equilibria
,”
Chaos
27
,
081104
(
2017
).
59.
I.
Korneev
,
A.
Slepnev
,
T.
Vadivasova
, and
V.
Semenov
, “
Subcritical Andronov-Hopf scenario for systems with a line of equilibria
,”
Chaos
31
,
073102
(
2021
).
60.
L.
Chua
, “
Memristor—The missing circuit element
,”
IEEE Trans. Circuit Theory
CT-18
,
507
519
(
1971
).
61.
L.
Chua
and
S.
Kang
, “
Memristive devices and systems
,”
Proc. IEEE
64
,
209
223
(
1976
).
62.
A.
Beck
,
J.
Bednorz
,
C.
Gerber
,
C.
Rossel
, and
D.
Widmer
, “
Reproducible switching effect in thin oxide films for memory applications
,”
Appl. Phys. Lett.
77
,
139
141
(
2000
).
63.
H.
Jeong
,
J.
Kim
,
J.
Kim
,
J.
Hwang
,
J.
Kim
,
J.
Lee
,
T.
Yoon
,
B.
Cho
,
S.
Kim
,
R.
Ruoff
, and
S.
Choi
, “
Graphene oxide thin films for flexible nonvolatile memory applications
,”
Nano Lett.
10
,
4381
4386
(
2010
).
64.
S.
Kim
,
S.
Choi
, and
W.
Lu
, “
Comprehensive physical model of dynamic resistive switching in an oxide memristor
,”
ACS Nano
8
,
2369
2376
(
2014
).
65.
A.
Mehonic
,
S.
Cueff
,
M.
Wojdak
,
S.
Hudziak
,
O.
Jambois
,
C.
Labbé
,
B.
Garrido
,
R.
Rizk
, and
A.
Kenyon
, “
Resistive switching in silicon suboxide films
,”
J. Appl. Phys.
111
,
074507
(
2012
).
66.
A.
Michaylov
,
A.
Belov
,
D.
Guseinov
,
D.
Korolev
,
I.
Antonov
,
D.
Efimovykh
,
S.
Tikhov
,
A.
Kasatkin
,
O.
Gorshkov
,
D.
Telebaum
,
A.
Bobrov
,
N.
Malekhonova
,
D.
Pavlov
,
E.
Gryaznov
, and
A.
Yatmanov
, “
Bipolar resistive switching and charge transport in silicon oxide memristor
,”
Mater. Sci. Eng. B
194
,
48
54
(
2015
).
67.
A.
Sawa
, “
Resistive switching in transition metal oxides
,”
Mater. Today
11
,
28
36
(
2008
).
68.
D.
Strukov
,
G.
Snider
,
D.
Stewart
, and
R.
Williams
, “
The missing memristor found
,”
Nature
453
,
80
83
(
2008
).
69.
S.
Wu
,
X.
Luo
,
S.
Turner
,
H.
Peng
,
W.
Lin
,
J.
Ding
,
A.
David
,
B.
Wang
,
G.
Van Tendeloo
,
J.
Wang
, and
T.
Wu
, “
Nonvolative resistive switching in Pt/LaAlO 3/SrTiO 3 heterostructures
,”
Phys. Rev. X
3
,
041027
(
2013
).
70.
Y.
Yang
,
P.
Sheridan
, and
W.
Lu
, “
Complementary resistive switching in tantalum oxide-based resistive memory devices
,”
Appl. Phys. Lett.
100
,
203112
(
2012
).
71.
T.
Berzina
,
A.
Smerieri
,
M.
Bernabò
,
A.
Pucci
,
G.
Ruggeri
,
V.
Erokhin
, and
M.
Fontana
, “
Optimization of an organic memristor as an adaptive memory element
,”
J. Appl. Phys.
105
,
124515
(
2009
).
72.
V.
Demin
,
V.
Erokhin
,
A.
Emelyanov
,
S.
Battistoni
,
G.
Baldi
,
S.
Iannotta
,
P.
Kashkarov
, and
M.
Kovalchuk
, “
Hardware elementary perceptron based on polyaniline memristive devices
,”
Org. Electron.
25
,
16
20
(
2015
).
73.
S.
Erokhina
,
V.
Sorokin
, and
V.
Erokhin
, “
Polyaniline-based organic memristive device fabricated by layed-by-layed deposition technique
,”
Electron. Mater. Lett.
11
,
801
805
(
2015
).
74.
G.
Liu
,
Y.
Chen
,
C.
Wang
,
W.
Zhang
,
R.-W.
Li
, and
L.
Wang
, “
Polymer memristor for information storage and neuromorphic applications
,”
Mater. Horiz.
1
,
489
506
(
2014
).
75.
A.
Chanthbouala
,
R.
Matsumoto
,
J.
Grollier
,
V.
Cros
,
A.
Anane
,
A.
Fert
,
A.
Khvalkovskiy
,
K.
Zvezdin
,
K.
Nishimura
,
Y.
Nagamine
,
H.
Maehara
,
K.
Tsunekawa
,
A.
Fukushima
, and
S.
Yuasa
, “
Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities
,”
Nat. Phys.
7
,
626
630
(
2011
).
76.
A.
Chanthbouala
,
V.
Garcia
,
R.
Cherifi
,
K.
Bouzehouane
,
S.
Fusil
,
X.
Moya
,
S.
Xavier
,
H.
Yamada
,
C.
Deranlot
,
N.
Mathur
,
M.
Bibes
,
A.
Barthélémy
, and
J.
Grollier
, “
A ferroelectric memristor
,”
Nat. Mater.
11
,
860
864
(
2012
).
77.
Y.
Pershin
and
M.
Di Ventra
, “
Current-voltage characteristics of semiconductor/ferromagnet junctions in the spin-blockade regime
,”
Phys. Rev. B
77
,
073301
(
2008
).
78.
X.
Wang
,
Y.
Chen
,
H.
Xi
,
H.
Li
, and
D.
Dimitrov
, “
Spintronic memristor through spin-torque-induced magnetization motion
,”
IEEE Electron Devices Lett.
30
,
294
297
(
2009
).
79.
B.
Muthuswamy
, “
Implementing memristor based chaotic circuits
,”
Int. J. Bifurcat. Chaos
20
,
1335
1350
(
2010
).
80.
B.
Bao
,
J.
Yu
, and
F.
Hu
, “
Generalized memristor consisting of diode bridge with first order parallel RC filter
,”
Int. J. Bifurcat. Chaos
24
,
1450143
(
2014
).
81.
V.
Semenov
, “
Synthesis of memristive one-port circuits with piecewise-smooth characteristics
,”
Int. J. Electron. Lett.
(published online) (2022).
82.
Memristor and Memristive Systems, edited by R. Tetzlaff (Springer-Verlag, New York, 2014).
83.
E.
Linn
,
A.
Siemon
,
R.
Waser
, and
S.
Menzel
, “
Applicability of well-established memristive models for simulations of resistive switching devices
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
61
,
2402
2410
(
2014
).
84.
J.
Singh
and
B.
Raj
, “
An accurate and generic window function for nonlinear memristor models
,”
J. Comput. Electron.
18
,
640
647
(
2019
).
85.
A.
Ascoli
,
V.
Senger
, and
R.
Tetzlaff
, “
Memristor model comparison
,”
IEEE Circuits Syst. Mag.
13
,
89
105
(
2013
).
86.
T.
Chang
,
S.
Jo
,
K.
Kim
,
P.
Sheridan
,
S.
Gaba
, and
W.
Lu
, “
Synaptic behaviors and modeling of a metal oxide memristive device
,”
Appl. Phys. A
102
,
857
863
(
2011
).
87.
L.
Chua
, “
Resistance switching memories are memristors
,”
Appl. Phys. A
102
,
765
783
(
2011
).
88.
D.
Guseinov
,
I.
Matyushkin
,
N.
Chernyaev
,
A.
Mikhailov
, and
Y.
Pershin
, “
Capacitive effects can make memristors chaotic
,”
Chaos, Solitons Fractals
144
,
110699
(
2021
).
89.
L.
Chen
,
C.
Li
,
T.
Huang
,
Y.
Chen
,
S.
Wen
, and
J.
Qi
, “
A synapse memristor model with forgetting effect
,”
Phys. Lett. A
377
,
3260
3265
(
2013
).
90.
E.
Zhou
,
L.
Fang
, and
B.
Yang
, “
A general method to describe forgetting effect of memristors
,”
Phys. Lett. A
383
,
942
948
(
2019
).
91.
V. S.
Anishchenko
,
T.
Vadivasova
, and
G.
Strelkova
,
Deterministic Nonlinear Systems
(
Springer
,
2014
).
92.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Part 1: Theory
,”
Meccanica
15
,
9
20
(
1980
).
93.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application
,”
Meccanica
15
,
21
30
(
1980
).
94.
A.
Buscarino
,
L.
Fortuna
,
M.
Frasca
, and
G.
Muscato
, “
Chaos does help motion control
,”
Int. J. Bifurcat. Chaos
17
,
3577
3581
(
2007
).
95.
A.
Zaher
and
A.
Abu-Rezq
, “
On the design of chaos-based secure communication systems
,”
Commun. Nonlinear Sci. Numer. Simul.
16
,
3721
3737
(
2011
).
96.
K.
Sun
,
Chaotic Secure Communication: Principles and Technologies
(
De Gruyter
,
2016
).
97.
B.
Abd-El-Atty
,
A.
Iliyasu
,
H.
Alaskar
, and
A.
Abd El-Latif
, “
A robust quasi-quantum walks-based steganography protocol for secure transmission of images on cloud-based e-healthcare platforms
,”
Sensors
20
,
3108
(
2020
).
98.
A.
Abd El-Latif
,
B.
Abd-El-Atty
,
A.
Belazi
, and
A.
Iliyasu
, “
Efficient chaos-based substitution-box and its application to image encryption
,”
Electronics
10
,
1392
(
2021
).
99.
M.
Varan
,
A.
Akgul
,
F.
Kurugollu
,
A.
Sansli
, and
K.
Smith
, “
A novel security methodology for smart grids: A case study of microcomputer-based encryption for PMU devices
,”
Complexity
2021
,
2798534
.
100.
L.
De la Fraga
,
C.
Mancillas-Lópes
, and
E.
Tlelo-Cuautle
, “
Designing an authenticated hash function with a 2D chaotic map
,”
Nonlinear Dyn.
104
,
4569
4580
(
2021
).
101.
G.
Bernstein
and
M.
Lieberman
, “
Secure random number generation using chaotic circuits
,”
IEEE Trans. Circuits Syst.
37
,
1157
1164
(
1990
).
102.
L.
Bonilla
,
M.
Alvaro
, and
M.
Carretero
, “
Chaos-based true random number generators
,”
J. Math. Ind.
7
,
1
(
2016
).
103.
O.
Almatroud
,
V.
Tamba
,
G.
Grassi
, and
V.-T.
Pham
, “
An oscillator without linear terms: Infinite equilibria, chaos, realization, and application
,”
Mathematics
9
,
3315
(
2921
).
104.
M.
Zhou
and
C.
Wang
, “
A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks
,”
Signal Process.
171
,
107484
(
2020
).
You do not currently have access to this content.