This article introduces an adaptive control scheme with a feedback delay, specifically designed for controlling partial networks, to achieve desynchronization in a coupled network with two or multiple clusters. The proposed scheme’s effectiveness is validated through several representative examples of coupled neuronal networks with two interconnected clusters. The efficacy of this scheme is attributed to the rigorous and numerical analyses on the corresponding transcendental characteristic equation, which includes time delay and other network parameters. In addition to investigating the impact of time delay and inter-connectivity on the stability of an incoherent state, we also rigorously find that controlling only one cluster cannot realize the desynchronization in the coupled oscillators within three or more clusters. All these, we believe, can deepen the understanding of the deep brain stimulation techniques presently used in the clinical treatment of neurodegenerative diseases and suggest future avenues for enhancing these clinical techniques through adaptive feedback settings.

1
K.
Kaneko
, “Coupled map lattice,” in Chaos, Order, and Patterns (Springer, 1991), pp. 237–247.
2
L. O.
Chua
,
CNN: A Paradigm for Complexity
(
Singapore
,
World Scientific
,
1998
), Vol. 31.
3
C. W.
Wu
and
L. O.
Chua
, “
Synchronization in an array of linearly coupled dynamical systems
,”
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
42
,
430
447
(
1995
).
4
C. W.
Wu
,
Synchronization in Coupled Chaotic Circuits & Systems
(
Singapore
,
World Scientific
,
2002
), Vol. 41.
5
M.
Bennett
,
M. F.
Schatz
,
H.
Rockwood
, and
K.
Wiesenfeld
, “
Huygens’s clocks
,”
Proc. R. Soc. London, Ser. A
458
,
563
579
(
2002
).
6
C.
Pan
,
Y.
Jiang
,
Q.
Zhu
, and
W.
Lin
, “
Emergent dynamics of coordinated cells with time delays in a tissue
,”
Chaos
29
,
031101
(
2019
).
7
S. H.
Strogatz
,
D. M.
Abrams
,
A.
McRobie
,
B.
Eckhardt
, and
E.
Ott
, “
Crowd synchrony on the Millennium Bridge
,”
Nature
438
,
43
44
(
2005
).
8
W. W.
Alberts
,
E. W.
Wright
, and
B.
Feinstein
, “
Cortical potentials and Parkinsonian tremor
,”
Nature
221
,
670
672
(
1969
).
9
M. J.
Armstrong
and
M. S.
Okun
, “
Diagnosis and treatment of Parkinson disease: A review
,”
JAMA
323
,
548
560
(
2020
).
10
F.
Lenz
,
H.
Kwan
,
R.
Martin
,
R.
Tasker
,
J.
Dostrovsky
, and
Y.
Lenz
, “
Single unit analysis of the human ventral thalamic nuclear group: Tremor-related activity in functionally identified cells
,”
Brain
117
,
531
543
(
1994
).
11
J. A.
Goldberg
,
U.
Rokni
,
T.
Boraud
,
E.
Vaadia
, and
H.
Bergman
, “
Spike synchronization in the cortex-basal ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials
,”
J. Neurosci.
24
,
6003
6010
(
2004
).
12
M. C.
Li
and
M. J.
Cook
, “
Deep brain stimulation for drug-resistant epilepsy
,”
Epilepsia
59
,
273
290
(
2018
).
13
P.
Jiruska
,
M.
De Curtis
,
J. G.
Jefferys
,
C. A.
Schevon
,
S. J.
Schiff
, and
K.
Schindler
, “
Synchronization and desynchronization in epilepsy: Controversies and hypotheses
,”
J. Physiol.
591
,
787
797
(
2013
).
14
X.
Peng
and
W.
Lin
, “
Complex dynamics of noise-perturbed excitatory-inhibitory neural networks with intra-correlative and inter-independent connections
,”
Front. Physiol.
13
,
915511
(
2022
).
15
J. S.
Perlmutter
and
J. W.
Mink
, “
Deep brain stimulation
,”
Annu. Rev. Neurosci.
29
,
229
(
2006
).
16
E.
Moro
,
R.
Esselink
,
J.
Xie
,
M.
Hommel
,
A.
Benabid
, and
P.
Pollak
, “
The impact on Parkinson’s disease of electrical parameter settings in STN stimulation
,”
Neurology
59
,
706
713
(
2002
).
17
S.
Little
and
P.
Brown
, “
The functional role of beta oscillations in Parkinson’s disease
,”
Parkinsonism Relat. Disord.
20
,
S44
S48
(
2014
).
18
G.
Tinkhauser
,
A.
Pogosyan
,
H.
Tan
,
D. M.
Herz
,
A. A.
Kühn
, and
P.
Brown
, “
Beta burst dynamics in Parkinson’s disease off and on dopaminergic medication
,”
Brain
140
,
2968
2981
(
2017
).
19
C.
Hammond
,
H.
Bergman
, and
P.
Brown
, “
Pathological synchronization in Parkinson’s disease: Networks, models and treatments
,”
Trends Neurosci.
30
,
357
364
(
2007
).
20
B.
Wingeier
,
T.
Tcheng
,
M. M.
Koop
,
B. C.
Hill
,
G.
Heit
, and
H. M.
Bronte-Stewart
, “
Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease
,”
Exp. Neurol.
197
,
244
251
(
2006
).
21
G.
Tinkhauser
,
A.
Pogosyan
,
S.
Little
,
M.
Beudel
,
D. M.
Herz
,
H.
Tan
, and
P.
Brown
, “
The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease
,”
Brain
140
,
1053
1067
(
2017
).
22
A.
Eusebio
,
H.
Cagnan
, and
P.
Brown
, “
Does suppression of oscillatory synchronisation mediate some of the therapeutic effects of DBS in patients with Parkinson’s disease?
,”
Front. Integr. Neurosci.
6
,
47
(
2012
).
23
A.
Velisar
,
J.
Syrkin-Nikolau
,
Z.
Blumenfeld
,
M.
Trager
,
M.
Afzal
,
V.
Prabhakar
, and
H.
Bronte-Stewart
, “
Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients
,”
Brain Stimul.
12
,
868
876
(
2019
).
24
W.
Bouthour
,
P.
Mégevand
,
J.
Donoghue
,
C.
Lüscher
,
N.
Birbaumer
, and
P.
Krack
, “
Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond
,”
Nat. Rev. Neurol.
15
,
343
352
(
2019
).
25
P.
Tass
, “
Effective desynchronization with a resetting pulse train followed by a single pulse
,”
Europhys. Lett.
55
,
171
(
2001
).
26
I.
Ratas
and
K.
Pyragas
, “
Controlling synchrony in oscillatory networks via an act-and-wait algorithm
,”
Phys. Rev. E
90
,
032914
(
2014
).
27
M.
Rosenblum
and
A.
Pikovsky
, “
Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms
,”
Phys. Rev. E
70
,
041904
(
2004
).
28
O. V.
Popovych
,
C.
Hauptmann
, and
P. A.
Tass
, “
Control of neuronal synchrony by nonlinear delayed feedback
,”
Biol. Cybern.
95
,
69
85
(
2006
).
29
K.
Pyragas
,
O.
Popovych
, and
P.
Tass
, “
Controlling synchrony in oscillatory networks with a separate stimulation-registration setup
,”
Europhys. Lett.
80
,
40002
(
2007
).
30
I.
Ratas
and
K.
Pyragas
, “
Eliminating synchronization in bistable networks
,”
Nonlinear Dyn.
83
,
1137
1151
(
2016
).
31
G.
Montaseri
,
M.
Javad Yazdanpanah
,
A.
Pikovsky
, and
M.
Rosenblum
, “
Synchrony suppression in ensembles of coupled oscillators via adaptive vanishing feedback
,”
Chaos
23
,
033122
(
2013
).
32
B.
Rosin
,
M.
Slovik
,
R.
Mitelman
,
M.
Rivlin-Etzion
,
S. N.
Haber
,
Z.
Israel
,
E.
Vaadia
, and
H.
Bergman
, “
Closed-loop deep brain stimulation is superior in ameliorating parkinsonism
,”
Neuron
72
,
370
384
(
2011
).
33
A.
Berényi
,
M.
Belluscio
,
D.
Mao
, and
G.
Buzsáki
, “
Closed-loop control of epilepsy by transcranial electrical stimulation
,”
Science
337
,
735
737
(
2012
).
34
O. V.
Popovych
and
P. A.
Tass
, “
Synchronization control of interacting oscillatory ensembles by mixed nonlinear delayed feedback
,”
Phys. Rev. E
82
,
026204
(
2010
).
35
O. V.
Popovych
,
C.
Hauptmann
, and
P. A.
Tass
, “
Effective desynchronization by nonlinear delayed feedback
,”
Phys. Rev. Lett.
94
,
164102
(
2005
).
36
Y.
Che
,
T.
Yang
,
R.
Li
,
H.
Li
,
C.
Han
,
J.
Wang
, and
X.
Wei
, “
Desynchronization in an ensemble of globally coupled chaotic bursting neuronal oscillators by dynamic delayed feedback control
,”
Int. J. Mod. Phys. B
29
,
1450235
(
2015
).
37
C.
Liu
,
G.
Zhao
,
J.
Wang
,
H.
Wu
,
H.
Li
,
C.
Fietkiewicz
, and
K. A.
Loparo
, “
Neural network-based closed-loop deep brain stimulation for modulation of pathological oscillation in Parkinson’s disease
,”
IEEE Access
8
,
161067
161079
(
2020
).
38
M.
Rosenblum
, “
Controlling collective synchrony in oscillatory ensembles by precisely timed pulses
,”
Chaos
30
,
093131
(
2020
).
39
D.
Krylov
,
D. V.
Dylov
, and
M.
Rosenblum
, “
Reinforcement learning for suppression of collective activity in oscillatory ensembles
,”
Chaos
30
,
033126
(
2020
).
40
S.
Zhou
,
P.
Ji
,
Q.
Zhou
,
J.
Feng
,
J.
Kurths
, and
W.
Lin
, “
Adaptive elimination of synchronization in coupled oscillator
,”
New J. Phys.
19
,
083004
(
2017
).
41
S.
Zhou
and
W.
Lin
, “
Eliminating synchronization of coupled neurons adaptively by using feedback coupling with heterogeneous delays
,”
Chaos
31
,
023114
(
2021
).
42
A. A.
Selivanov
,
J.
Lehnert
,
T.
Dahms
,
P.
Hövel
,
A. L.
Fradkov
, and
E.
Schöll
, “
Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators
,”
Phys. Rev. E
85
,
016201
(
2012
).
43
S.
Zhou
,
Y.-C.
Lai
, and
W.
Lin
, “
Stochastically adaptive control and synchronization: From globally one-sided Lipschitzian to only locally Lipschitzian systems
,”
SIAM J. Appl. Dyn. Syst.
21
,
932
959
(
2022
).
44
E. T.
Mau
and
M.
Rosenblum
, “Desynchronizing two oscillators while stimulating and observing only one,” arXiv:2301.04973 (2023).
45
M.
Chen
, “
Synchronization in time-varying networks: A matrix measure approach
,”
Phys. Rev. E
76
,
016104
(
2007
).
46
X. F.
Wang
and
G.
Chen
, “
Pinning control of scale-free dynamical networks
,”
Phys. A
310
,
521
531
(
2002
).
47
R.
Grigoriev
,
M.
Cross
, and
H.
Schuster
, “
Pinning control of spatiotemporal chaos
,”
Phys. Rev. Lett.
79
,
2795
(
1997
).
48
J.
Cao
and
J.
Lu
, “
Adaptive synchronization of neural networks with or without time-varying delay
,”
Chaos
16
,
013133
(
2006
).
49
W.
Xia
and
J.
Cao
, “
Pinning synchronization of delayed dynamical networks via periodically intermittent control
,”
Chaos
19
,
013120
(
2009
).
50
P. W.
Holland
,
K. B.
Laskey
, and
S.
Leinhardt
, “
Stochastic blockmodels: First steps
,”
Soc. Netw.
5
,
109
137
(
1983
).
51
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
,
037113
(
2008
).
52
Y.-Z.
Sun
,
S.-Y.
Leng
,
Y.-C.
Lai
,
C.
Grebogi
, and
W.
Lin
, “
Closed-loop control of complex networks: A trade-off between time and energy
,”
Phys. Rev. Lett.
119
,
198301
(
2017
).
53
M.
Storace
,
D.
Linaro
, and
E.
DE Lange
, “
The Hindmarsh-Rose neuron model: Bifurcation analysis and piecewise-linear approximations
,”
Chaos
18
,
033128
(
2008
).
54
S.
Zhou
,
Y.
Guo
,
M.
Liu
,
Y.-C.
Lai
, and
W.
Lin
, “
Random temporal connections promote network synchronization
,”
Phys. Rev. E
100
,
032302
(
2019
).
55
J.-W.
Hou
,
H.-F.
Ma
,
D.
He
,
J.
Sun
,
Q.
Nie
, and
W.
Lin
, “
Harvesting random embedding for high-frequency change-point detection in temporal complex systems
,”
Natl. Sci. Rev.
9
,
nwab228
(
2022
).
You do not currently have access to this content.