We consider heteroclinic networks between nodes where the only connections are those linking each node to its two subsequent neighboring ones. Using a construction method where all nodes are placed in a single one-dimensional space and the connections lie in coordinate planes, we show that it is possible to robustly realize these networks in for any number of nodes using a polynomial vector field. This bound on the space dimension (while the number of nodes in the network goes to ) is a novel phenomenon and a step toward more efficient realization methods for given connection structures in terms of the required number of space dimensions. We briefly discuss some stability properties of the generated heteroclinic objects.
REFERENCES
1.
L.
Garrido-da-Silva
and S. B. S. D.
Castro
, “Cyclic dominance in a two-person Rock-Scissors-Paper game
,” Int. J. Game Theory
49
, 885
–912
(2020
). 2.
S. B. S. D.
Castro
, A.
Ferreira
, L.
Garrido-da-Silva
, and I. S.
Labouriau
, “Stability of cycles in a game of Rock-Scissors-Paper-Lizard-Spock
,” SIAM J. Appl. Dyn. Syst.
21
(4
), 2393
–2431
(2022
). 3.
C. M.
Postlethwaite
and A. M.
Rucklidge
, “Stability of cycling behaviour near a heteroclinic network model of Rock-Paper-Scissors-Lizard-Spock
,” Nonlinearity
35
, 1702
–1733
(2022
). 4.
P.
Ashwin
and C.
Postlethwaite
, “On designing heteroclinic networks from graphs
,” Phys. D
265
(1
), 26
–39
(2013
). 5.
P.
Ashwin
and C.
Postlethwaite
, “Designing heteroclinic and excitable networks in phase space using two populations of couple cells
,” J. Nonlinear Sci.
26
, 345
–364
(2016
). 6.
M. J.
Field
, “Heteroclinic networks in homogeneous and heterogeneous identical cell systems
,” J. Nonlinear Sci.
25
, 779
–813
(2015
). 7.
M. J.
Field
, “Patterns of desynchronization and resynchronization in heteroclinic networks
,” Nonlinearity
30
, 516
–557
(2017
). 8.
C. M.
Postlethwaite
and R.
Sturman
, “Stability of heteroclinic cycles in ring graphs
,” Chaos
32
, 063104
(2022
). 9.
V. S.
Afraimovich
, G.
Moses
, and T.
Young
, “Two-dimensional heteroclinic attractor in the generalized Lotka–Volterra system
,” Nonlinearity
29
, 1645
–1667
(2016
). 10.
M.
Rabinovich
, A.
Volkovskii
, P.
Lecanda
, R.
Huerta
, H. D. I.
Abarbanel
, and G.
Laurent
, “Dynamical encoding by networks of competing neuron groups: Winnerless competition
,” Phys. Rev. Lett.
18
(6
), 068102
(2001
). 11.
V. S.
Afraimovich
, M. I.
Rabinovich
, and P.
Varona
, “Heteroclinic contours in neural ensembles and the winnerless competition principle
,” Inter. J. Bifur. Chaos
14
, 1195
–1208
(2004
). 12.
V. S.
Afraimovich
, M. A.
Zaks
, and M. I.
Rabinovich
, “Mind-to-mind heteroclinic coordination: Model of sequential episodic memory initiation
,” Chaos
28
, 053107
(2018
). 13.
V. S.
Afraimovich
, V. P.
Zhigulin
, and M. I.
Rabinovich
, “On the origin of reproducible sequential activity in neural circuits
,” Chaos
14
, 1123
–1129
(2004
). 14.
P.
Ashwin
, S. B. S. D.
Castro
, and A.
Lohse
, “Almost complete and equable heteroclinic networks
,” J. Nonlinear Sci.
30
, 1
–22
(2020
). 15.
O.
Podvigina
and A.
Lohse
, “Simple heteroclinic networks in
,” Nonlinearity
32
, 3269
–3293
(2019
). 16.
O.
Podvigina
, “Classification and stability of simple homoclinic cycles in
,” Nonlinearity
26
, 1501
–1528
(2013
). 17.
O.
Podvigina
, “Stability and bifurcations of heteroclinic cycles of type
,” Nonlinearity
25
, 1887
–1917
(2012
). 18.
L.
Garrido-da-Silva
and S. B. S. D.
Castro
, “Stability of quasi-simple heteroclinic cycles
,” Dyn. Syst.
34
(1
), 14
–39
(2019
). 19.
L.
Garrido-da-Silva
, “Heteroclinic dynamics in game theory,” Ph.D. dissertation (University of Porto, 2018).20.
A.
Lohse
, “Stability of heteroclinic cycles in transverse bifurcations
,” Phys. D
310
, 95
–103
(2015
). © 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.