We consider heteroclinic networks between n N nodes where the only connections are those linking each node to its two subsequent neighboring ones. Using a construction method where all nodes are placed in a single one-dimensional space and the connections lie in coordinate planes, we show that it is possible to robustly realize these networks in R 6 for any number of nodes n using a polynomial vector field. This bound on the space dimension (while the number of nodes in the network goes to ) is a novel phenomenon and a step toward more efficient realization methods for given connection structures in terms of the required number of space dimensions. We briefly discuss some stability properties of the generated heteroclinic objects.

1.
L.
Garrido-da-Silva
and
S. B. S. D.
Castro
, “
Cyclic dominance in a two-person Rock-Scissors-Paper game
,”
Int. J. Game Theory
49
,
885
912
(
2020
).
2.
S. B. S. D.
Castro
,
A.
Ferreira
,
L.
Garrido-da-Silva
, and
I. S.
Labouriau
, “
Stability of cycles in a game of Rock-Scissors-Paper-Lizard-Spock
,”
SIAM J. Appl. Dyn. Syst.
21
(
4
),
2393
2431
(
2022
).
3.
C. M.
Postlethwaite
and
A. M.
Rucklidge
, “
Stability of cycling behaviour near a heteroclinic network model of Rock-Paper-Scissors-Lizard-Spock
,”
Nonlinearity
35
,
1702
1733
(
2022
).
4.
P.
Ashwin
and
C.
Postlethwaite
, “
On designing heteroclinic networks from graphs
,”
Phys. D
265
(
1
),
26
39
(
2013
).
5.
P.
Ashwin
and
C.
Postlethwaite
, “
Designing heteroclinic and excitable networks in phase space using two populations of couple cells
,”
J. Nonlinear Sci.
26
,
345
364
(
2016
).
6.
M. J.
Field
, “
Heteroclinic networks in homogeneous and heterogeneous identical cell systems
,”
J. Nonlinear Sci.
25
,
779
813
(
2015
).
7.
M. J.
Field
, “
Patterns of desynchronization and resynchronization in heteroclinic networks
,”
Nonlinearity
30
,
516
557
(
2017
).
8.
C. M.
Postlethwaite
and
R.
Sturman
, “
Stability of heteroclinic cycles in ring graphs
,”
Chaos
32
,
063104
(
2022
).
9.
V. S.
Afraimovich
,
G.
Moses
, and
T.
Young
, “
Two-dimensional heteroclinic attractor in the generalized Lotka–Volterra system
,”
Nonlinearity
29
,
1645
1667
(
2016
).
10.
M.
Rabinovich
,
A.
Volkovskii
,
P.
Lecanda
,
R.
Huerta
,
H. D. I.
Abarbanel
, and
G.
Laurent
, “
Dynamical encoding by networks of competing neuron groups: Winnerless competition
,”
Phys. Rev. Lett.
18
(
6
),
068102
(
2001
).
11.
V. S.
Afraimovich
,
M. I.
Rabinovich
, and
P.
Varona
, “
Heteroclinic contours in neural ensembles and the winnerless competition principle
,”
Inter. J. Bifur. Chaos
14
,
1195
1208
(
2004
).
12.
V. S.
Afraimovich
,
M. A.
Zaks
, and
M. I.
Rabinovich
, “
Mind-to-mind heteroclinic coordination: Model of sequential episodic memory initiation
,”
Chaos
28
,
053107
(
2018
).
13.
V. S.
Afraimovich
,
V. P.
Zhigulin
, and
M. I.
Rabinovich
, “
On the origin of reproducible sequential activity in neural circuits
,”
Chaos
14
,
1123
1129
(
2004
).
14.
P.
Ashwin
,
S. B. S. D.
Castro
, and
A.
Lohse
, “
Almost complete and equable heteroclinic networks
,”
J. Nonlinear Sci.
30
,
1
22
(
2020
).
15.
O.
Podvigina
and
A.
Lohse
, “
Simple heteroclinic networks in R 4
,”
Nonlinearity
32
,
3269
3293
(
2019
).
16.
O.
Podvigina
, “
Classification and stability of simple homoclinic cycles in R 5
,”
Nonlinearity
26
,
1501
1528
(
2013
).
17.
O.
Podvigina
, “
Stability and bifurcations of heteroclinic cycles of type Z
,”
Nonlinearity
25
,
1887
1917
(
2012
).
18.
L.
Garrido-da-Silva
and
S. B. S. D.
Castro
, “
Stability of quasi-simple heteroclinic cycles
,”
Dyn. Syst.
34
(
1
),
14
39
(
2019
).
19.
L.
Garrido-da-Silva
, “Heteroclinic dynamics in game theory,” Ph.D. dissertation (University of Porto, 2018).
20.
A.
Lohse
, “
Stability of heteroclinic cycles in transverse bifurcations
,”
Phys. D
310
,
95
103
(
2015
).
You do not currently have access to this content.