We analyze the synchronization dynamics of the thermodynamically large systems of globally coupled phase oscillators under Cauchy noise forcings with a bimodal distribution of frequencies and asymmetry between two distribution components. The systems with the Cauchy noise admit the application of the Ott–Antonsen ansatz, which has allowed us to study analytically synchronization transitions both in the symmetric and asymmetric cases. The dynamics and the transitions between various synchronous and asynchronous regimes are shown to be very sensitive to the asymmetry degree, whereas the scenario of the symmetry breaking is universal and does not depend on the particular way to introduce asymmetry, be it the unequal populations of modes in a bimodal distribution, the phase delay of the Kuramoto–Sakaguchi model, the different values of the coupling constants, or the unequal noise levels in two modes. In particular, we found that even small asymmetry may stabilize the stationary partially synchronized state, and this may happen even for an arbitrarily large frequency difference between two distribution modes (oscillator subgroups). This effect also results in the new type of bistability between two stationary partially synchronized states: one with a large level of global synchronization and synchronization parity between two subgroups and another with lower synchronization where the one subgroup is dominant, having a higher internal (subgroup) synchronization level and enforcing its oscillation frequency on the second subgroup. For the four asymmetry types, the critical values of asymmetry parameters were found analytically above which the bistability between incoherent and partially synchronized states is no longer possible.

1.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series No. 12 (Cambridge University Press, Cambridge, 2001).
2.
G. V.
Osipov
,
J.
Kurths
, and
C.
Zhou
, Synchronization in Oscillatory Networks, Springer Series in Synergetics (Springer, Berlin, 2007).
3.
S.
Boccaletti
,
A. N.
Pisarchik
,
C. I.
del Genio
, and
A.
Amann
,
Synchronization: From Coupled Systems to Complex Networks
(
Cambridge University Press
,
Cambridge
,
2018
).
4.
Y.
Kuramoto
, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics, edited by H. Araki (Springer, Berlin, 1975), pp. 420–422.
5.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Pérez Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
,
137
185
(
2005
).
6.
S.
Gupta
,
A.
Campa
, and
S.
Ruffo
, “
Kuramoto model of synchronization: Equilibrium and nonequilibrium aspects
,”
J. Stat. Mech.
2014
,
R08001
.
7.
A.
Pikovsky
and
M.
Rosenblum
, “
Dynamics of globally coupled oscillators: Progress and perspectives
,”
Chaos
25
,
097616
(
2015
).
8.
P.
Kundu
,
P.
Khanra
,
C.
Hens
, and
P.
Pal
, “
Transition to synchrony in degree-frequency correlated Sakaguchi–Kuramoto model
,”
Phys. Rev. E
96
,
052216
(
2017
).
9.
S.
Gherardini
,
S.
Gupta
, and
S.
Ruffo
, “
Spontaneous synchronisation and nonequilibrium statistical mechanics of coupled phase oscillators
,”
Contemp. Phys.
59
,
229
250
(
2018
).
10.
P.
Kundu
,
C.
Hens
,
B.
Barzel
, and
P.
Pal
, “
Perfect synchronization in networks of phase-frustrated oscillators
,”
EPL
120
,
40002
(
2018
).
11.
C. C.
Gong
,
C.
Zheng
,
R.
Toenjes
, and
A.
Pikovsky
, “
Repulsively coupled Kuramoto–Sakaguchi phase oscillators ensemble subject to common noise
,”
Chaos
29
,
033127
(
2019
).
12.
P.
Kundu
and
P.
Pal
, “
Synchronization transition in Sakaguchi–Kuramoto model on complex networks with partial degree-frequency correlation
,”
Chaos
29
,
013123
(
2019
).
13.
L. L.
Bonilla
,
J. C.
Neu
, and
R.
Spigler
, “
Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators
,”
J. Stat. Phys.
67
,
313
330
(
1992
).
14.
J. D.
Crawford
, “
Amplitude expansions for instabilities in populations of globally-coupled oscillators
,”
J. Stat. Phys.
74
,
1047
1084
(
1994
).
15.
C. J.
Perez
and
F.
Ritort
, “
A moment-based approach to the dynamical solution of the Kuramoto model
,”
J. Phys. A: Math. Gen.
30
,
8095
(
1997
).
16.
J. A.
Acebrón
and
L. L.
Bonilla
, “
Asymptotic description of transients and synchronized states of globally coupled oscillators
,”
Phys. D: Nonlinear Phenom.
114
,
296
314
(
1998
).
17.
L. L.
Bonilla
,
C. J.
Pérez Vicente
, and
R.
Spigler
, “
Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions
,”
Phys. D: Nonlinear Phenom.
113
,
79
97
(
1998
).
18.
J. A.
Acebrón
,
L. L.
Bonilla
, and
R.
Spigler
, “
Synchronization in populations of globally coupled oscillators with inertial effects
,”
Phys. Rev. E
62
,
3437
3454
(
2000
).
19.
E. A.
Martens
,
E.
Barreto
,
S. H.
Strogatz
,
E.
Ott
,
P.
So
, and
T. M.
Antonsen
, “
Exact results for the Kuramoto model with a bimodal frequency distribution
,”
Phys. Rev. E
79
,
026204
(
2009
).
20.
D.
Pazó
and
E.
Montbrió
, “
Existence of hysteresis in the Kuramoto model with bimodal frequency distributions
,”
Phys. Rev. E
80
,
046215
(
2009
).
21.
V. O.
Munyaev
,
L. A.
Smirnov
,
V. A.
Kostin
,
G. V.
Osipov
, and
A.
Pikovsky
, “
Analytical approach to synchronous states of globally coupled noisy rotators
,”
New J. Phys.
22
,
023036
(
2020
).
22.
A.
Campa
, “
Phase diagram of noisy systems of coupled oscillators with a bimodal frequency distribution
,”
J. Phys. A: Math. Theor.
53
,
154001
(
2020
).
23.
H.
Kim
and
K. E.
Jones
, “
Asymmetric electrotonic coupling between the soma and dendrites alters the bistable firing behaviour of reduced models
,”
J. Comput. Neurosci.
30
,
659
674
(
2011
).
24.
A. N.
Pisarchik
,
R.
Jaimes-Reátegui
, and
M. A.
García-Vellisca
, “
Asymmetry in electrical coupling between neurons alters multistable firing behavior
,”
Chaos
28
,
033605
(
2018
).
25.
A. N.
Pisarchik
and
A. E.
Hramov
, Multistability in Physical and Living Systems: Characterization and Applications, Springer Series in Synergetics (Springer International Publishing, Cham, 2022).
26.
J. A.
Acebrón
,
L. L.
Bonilla
,
S.
De Leo
, and
R.
Spigler
, “
Breaking the symmetry in bimodal frequency distributions of globally coupled oscillators
,”
Phys. Rev. E
57
,
5287
5290
(
1998
).
27.
E.
Montbrió
,
J.
Kurths
, and
B.
Blasius
, “
Synchronization of two interacting populations of oscillators
,”
Phys. Rev. E
70
,
056125
(
2004
).
28.
E.
Barreto
,
B.
Hunt
,
E.
Ott
, and
P.
So
, “
Synchronization in networks of networks: The onset of coherent collective behavior in systems of interacting populations of heterogeneous oscillators
,”
Phys. Rev. E
77
,
036107
(
2008
).
29.
M.
Manoranjani
,
R.
Gopal
,
D. V.
Senthilkumar
,
V. K.
Chandrasekar
, and
M.
Lakshmanan
, “
Influence of asymmetric parameters in higher-order coupling with bimodal frequency distribution
,”
Phys. Rev. E
105
,
034307
(
2022
).
30.
O. E.
Omel’chenko
and
M.
Wolfrum
, “
Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model
,”
Phys. Rev. Lett.
109
,
164101
(
2012
).
31.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
,
037113
(
2008
).
32.
R.
Tönjes
and
A.
Pikovsky
, “
Low-dimensional description for ensembles of identical phase oscillators subject to Cauchy noise
,”
Phys. Rev. E
102
,
052315
(
2020
).
33.
E. N.
Gryazina
, “
The D-decomposition theory
,”
Autom. Remote Control
65
,
1872
1884
(
2004
).
34.
G.
Kreweras
and
H.
Niederhausen
, “
Solution of an enumerative problem connected with lattice paths
,”
Eur. J. Comb.
2
,
55
60
(
1981
).
35.
A. J.
Wood
,
R. A.
Blythe
, and
M. R.
Evans
, “
Rényi entropy of the totally asymmetric exclusion process
,”
J. Phys. A: Math. Theor.
50
,
475005
(
2017
).
36.
OEIS Foundation, Inc.
, Entry A196148, The On-Line Encyclopedia of Integer Sequences (2023); see https://oeis.org/A196148.
You do not currently have access to this content.