We study the slow–fast dynamics of a system with a double-Hopf bifurcation and a slowly varying parameter. The model consists of coupled Bonhöffer–van der Pol oscillators excited by a periodic slow-varying AC source. We consider two cases where the slowly varying parameter passes by or crosses the double-Hopf bifurcation, respectively. Due to the system’s multistability, two bursting solutions are observed in each case: single-mode bursting and two-mode bursting. Further investigation reveals that the double-Hopf bifurcation causes a stable coexistence of these two bursting solutions. The mechanism of such coexistence is explained using the slowly changing phase portraits of the fast subsystem. We also show the robustness of the observed effect in the vicinity of the double-Hopf bifurcation.

1.
A. L.
Hodgkin
and
A. F.
Huxley
, “
A quantitative description of membrane current and its application to conduction and excitation in nerve
,”
J. Physiol.
117
,
500
(
1952
).
2.
A.
Mielke
, Analysis, Modeling and Simulation of Multiscale Problems, edited by A. Mielke (Springer, Berlin, 2006), pp. 1–697.
3.
T.
Malashchenko
,
A.
Shilnikov
, and
G.
Cymbalyuk
, “
Six types of multistability in a neuronal model based on slow calcium current
,”
PLoS One
6
,
e21782
(
2011
).
4.
C.
Kuehn
,
Springer
(
Springer-Verlag GmbH
,
2015
), Vol. 191, pp. 814.
5.
J.
Cabral
,
M. L.
Kringelbach
, and
G.
Deco
, “
Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms
,”
NeuroImage
160
,
84
96
(
2017
).
6.
M.
Wechselberger
, Geometric Singular Perturbation Theory Beyond the Standard Form, Frontiers in applied dynamical systems: Reviews and tutorials (Springer, Cham, 2020), Vol. 6.
7.
C.
Siettos
and
J.
Starke
, “
Multiscale modeling of brain dynamics: From single neurons and networks to mathematical tools
,”
Wiley Interdiscip. Rev.: Syst. Biol. Med.
8
,
438
458
(
2016
).
8.
V.
Petrov
,
S. K.
Scott
, and
K.
Showalter
, “
Mixed-mode oscillations in chemical systems
,”
J. Chem. Phys.
97
,
6191
6198
(
1992
).
9.
D.
Bakeš
,
L.
Schreiberová
,
I.
Schreiber
, and
M. J.
Hauser
, “
Mixed-mode oscillations in a homogeneous pH-oscillatory chemical reaction system
,”
Chaos
18
,
015102
(
2008
).
10.
J.
Guckenheimer
and
C.
Scheper
, “
A geometric model for mixed-mode oscillations in a chemical system
,”
SIAM J. Appl. Dyn. Syst.
10
,
92
128
(
2011
).
11.
M.
Desroches
,
J.
Guckenheimer
,
B.
Krauskopf
,
C.
Kuehn
,
H. M.
Osinga
, and
M.
Wechselberger
, “
Mixed-mode oscillations with multiple time scales
,”
SIAM Rev.
54
,
211
288
(
2012
).
12.
M.
Krupa
,
N.
Popović
,
N.
Kopell
, and
H. G.
Rotstein
, “
Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron
,”
Chaos
18
,
015106
(
2008
).
13.
G.
De Vries
and
A.
Sherman
, “
Channel sharing in pancreatic β-cells revisited: Enhancement of emergent bursting by noise
,”
J. Theor. Biol.
207
,
513
530
(
2000
).
14.
S.
Yanchuk
and
M.
Wolfrum
, “
A multiple time scale approach to the stability of external cavity modes in the Lang–Kobayashi system using the limit of large delay
,”
SIAM J. Appl. Dyn. Syst.
9
,
519
535
(
2010
).
15.
I.
Bačić
,
S.
Yanchuk
,
M.
Wolfrum
, and
I.
Franović
, “
Noise-induced switching in two adaptively coupled excitable systems
,”
Eur. Phys. J. Spec. Top.
227
,
1077
1090
(
2018
).
16.
I.
Franović
,
S.
Yanchuk
,
S.
Eydam
,
I.
Bačić
, and
M.
Wolfrum
, “
Dynamics of a stochastic excitable system with slowly adapting feedback
,”
Chaos
30
,
083109
(
2020
).
17.
E.
Mosekilde
,
B.
Lading
,
S.
Yanchuk
, and
Y.
Maistrenko
, “
Bifurcation structure of a model of bursting pancreatic cells
,”
BioSystems
63
,
3
13
(
2001
).
18.
J.
Rinzel
, “Bursting oscillations in an excitable membrane model,” in Ordinary and Partial Differential Equations: Proceedings of the Eighth Conference held at Dundee, Scotland, June 25–29, 1984 (Springer, 2006), pp. 304–316.
19.
R.
Bertram
,
M. J.
Butte
,
T.
Kiemel
, and
A.
Sherman
, “
Topological and phenomenological classification of bursting oscillations
,”
Bull. Math. Biol.
57
,
413
439
(
1995
).
20.
C.
Kuehn
, “
A mathematical framework for critical transitions: Bifurcations, fastslow systems and stochastic dynamics
,”
Phys. D: Nonlinear Phenom.
240
,
1020
1035
(
2011
).
21.
E. M.
Izhikevich
, “
Neural excitability, spiking and bursting
,”
Int. J. Bifurcat. Chaos
10
,
1171
1266
(
2000
).
22.
J.
Llibre
,
M.
Messias
, and
A.
de Carvalho Reinol
, “
Zero–Hopf bifurcations in three-dimensional chaotic systems with one stable equilibrium
,”
Int. J. Bifurcat. Chaos
30
,
2050189
(
2020
).
23.
J.
Li
,
Y.
Liu
, and
Z.
Wei
, “
Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system
,”
Adv. Differ. Equ.
2018
,
1
17
(
2018
).
24.
X.
Li
and
Q.
Bi
, “
Cusp bursting and slow-fast analysis with two slow parameters in photosensitive Belousov—Zhabotinsky reaction
,”
Chin. Phys. Lett.
30
,
070503
(
2013
).
25.
Q.
Bi
,
S.
Li
,
J.
Kurths
, and
Z.
Zhang
, “
The mechanism of bursting oscillations with different codimensional bifurcations and nonlinear structures
,”
Nonlinear Dyn.
85
,
993
1005
(
2016
).
26.
L.
Duan
and
Q.
Lu
, “
Bursting oscillations near codimension-two bifurcations in the Chay neuron model
,”
Int. J. Nonlinear Sci. Numer. Simul.
7
,
59
64
(
2006
).
27.
F.
Takens
,
H. W.
Broer
,
B.
Krauskopf
, and
G.
Vegter
, “Global analysis of dynamical systems: Festschrift dedicated to Floris Takens for his 60th birthday,” Tech. Rep. (Institute of Physics Pub., 2001).
28.
L.
Duan
,
Q.
Lu
, and
Q.
Wang
, “
Two-parameter bifurcation analysis of firing activities in the Chay neuronal model
,”
Neurocomputing
72
,
341
351
(
2008
).
29.
W. H.
Barnett
and
G. S.
Cymbalyuk
, “
A codimension-2 bifurcation controlling endogenous bursting activity and pulse-triggered responses of a neuron model
,”
PLoS One
9
,
e85451
(
2014
).
30.
Y.
Yu
,
Z.
Zhang
, and
X.
Han
, “
Periodic or chaotic bursting dynamics via delayed pitchfork bifurcation in a slow-varying controlled system
,”
Commun. Nonlinear Sci. Numer. Simul.
56
,
380
391
(
2018
).
31.
Y.
Xia
,
Z.
Zhang
, and
Q.
Bi
, “
Relaxation oscillations and the mechanism in a periodically excited vector field with Pitchfork–Hopf bifurcation
,”
Nonlinear Dyn.
101
,
37
51
(
2020
).
32.
M.
Golubitsky
,
K.
Josic
, and
T. J.
Kaper
, “An unfolding theory approach to bursting in fast–slow systems,” in Global Analysis of Dynamical Systems (CRC Press, 2001), pp. 282–313.
33.
Y. A.
Kuznetsov
,
I. A.
Kuznetsov
, and
Y.
Kuznetsov
,
Elements of Applied Bifurcation Theory
(
Springer New York
,
1998
), Vol. 112.
34.
K.
Tsumoto
,
T.
Yoshinaga
, and
H.
Kawakami
, “
Bifurcations in synaptically coupled BVP neurons
,”
Int. J. Bifurcat. Chaos Appl. Sci. Eng.
11
,
1053
1064
(
2001
).
35.
X. P.
Wu
and
L.
Wang
, “
Codimension-2 bifurcations of coupled BVP oscillators with hard characteristics
,”
Appl. Math. Comput.
219
,
5303
5320
(
2013
).
36.
T.
Ueta
,
H.
Miyazaki
,
T.
Kousaka
, and
H.
Kawakami
, “
Bifurcation and chaos in coupled BVP oscillators
,”
Int. J. Bifurcat. Chaos
14
,
1305
1324
(
2004
).
37.
S.
Tsuji
,
T.
Ueta
, and
H.
Kawakami
, “
Bifurcation analysis of current coupled BVP oscillators
,”
Int. J. Bifurcat. Chaos
17
,
837
850
(
2007
).
38.
X.
Zhang
,
B.
Zhang
,
X.
Han
, and
Q.
Bi
, “
On occurrence of sudden increase of spiking amplitude via fold limit cycle bifurcation in a modified Van der Pol–Duffing system with slow-varying periodic excitation
,”
Nonlinear Dyn.
108
,
2097
2114
(
2022
).
39.
S.
Wieczorek
,
C.
Xie
, and
P.
Ashwin
, “Rate-induced tipping: Thresholds, edge states and connecting orbits,” arXiv:2111.15497 [math.DS] (2021).
40.
A.
Dhooge
,
W.
Govaerts
, and
Y. A.
Kuznetsov
, “
Matcont: A MATLAB package for numerical bifurcation analysis of ODEs
,”
ACM Trans. Math. Softw.
29
,
141
164
(
2003
).
41.
P.
Ashwin
,
S.
Wieczorek
,
R.
Vitolo
, and
P.
Cox
, “
Tipping points in open systems: Bifurcation, noise-induced and rate-dependent examples in the climate system
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
370
,
1166
1184
(
2012
). 1103.0169.
42.
S. M.
Baer
,
T.
Erneux
, and
J.
Rinzel
, “
The slow passage through a Hopf bifurcation: Delay, memory effects, and resonance
,”
SIAM J. Appl. Math.
49
,
55
71
(
1989
).
43.
C.
Baesens
, “
Slow sweep through a period-doubling cascade: Delayed bifurcations and renormalisation
,”
Phys. D
53
,
319
375
(
1991
).
44.
N.
Berglund
and
H.
Kunz
, “
Memory effects and scaling laws in slowly driven systems
,”
J. Phys. A: Math. Gen.
32
,
15
39
(
1999
). 9807025.
45.
Y.
Do
and
J. M.
Lopez
, “
Slow passage through multiple bifurcation points
,”
Discrete Contin. Dyn. Syst. B
18
,
95
107
(
2013
).
46.
J.
Cantisán
,
S.
Yanchuk
,
J. M.
Seoane
,
M. A. F.
Sanjuán
, and
J.
Kurths
, “Rate and memory effects in bifurcation-induced tipping,” arXiv:2304.03668 (2023).
You do not currently have access to this content.