The paper is devoted to the parameter identification problem for two-neuron FitzHugh–Nagumo models under condition when only one variable, namely, the membrane potential, is measured. Another practical assumption is that both variable derivatives cannot be measured. Finally, it is assumed that the sensor measuring the membrane potential is imprecise, and all measurements have some unknown scaling factor. These circumstances bring additional difficulties to the parameters’ estimation problem, and therefore, such case was not studied before. To solve the problem first, the model is transformed to a more simple form without unmeasurable variables. Variables obtained from applying a second-order real filter-differentiator are used instead of unmeasurable derivatives. Then, an adaptive system, parameters of which are estimates of original system parameters, is designed. The estimation (identification) goal is to properly adjust parameter estimates. To this end, the speed-gradient method is employed. The correctness of the obtained solution is proved theoretically and illustrated by computer simulation in the Simulink environment. The sufficient conditions of asymptotically correct identification for the speed-gradient method with integral objective function are formulated and proved. The novelty of the paper is that in contrast to existing solutions to the FitzHugh–Nagumo identification problem, we take into account a systematic error of the membrane potential measurement. Furthermore, the parameters are estimated for a system composed of two FitzHugh–Nagumo models, which open perspectives for using the proposed results for modeling and estimation of parameters for neuron population.

1.
R.
FitzHugh
, “
Impulses and physiological states in theoretical models of nerve membrane
,”
Biophys. J.
1
,
445
466
(
1961
).
2.
J.
Nagumo
,
S.
Arimoto
, and
S.
Yoshizawa
, “
An active pulse transmission line simulating nerve axon
,”
Proc. IRE
50
,
2061
2070
(
1962
).
3.
M.
Gerster
,
R.
Berner
,
J.
Sawicki
,
A.
Zakharova
,
A.
Škoch
,
J.
Hlinka
,
K.
Lehnertz
, and
E.
Schöll
, “
FitzHugh–Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena
,”
Chaos
30
,
123130
(
2020
).
4.
C. N.
Takembo
,
A.
Mvogo
,
H. P. E.
Fouda
, and
T. C.
Kofane
, “
Localized modulated wave solution of diffusive FitzHugh–Nagumo cardiac networks under magnetic flow effect
,”
Nonlinear Dyn.
95
,
1079
1098
(
2019
).
5.
E. M.
Izhikevich
and
R.
FitzHugh
, “
FitzHugh-Nagumo model
,”
Scholarpedia
1
,
1349
(
2006
).
6.
E. M.
Izhikevich
and
G. M.
Edelman
, “
Large-scale model of mammalian thalamocortical systems
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
3593
3598
(
2008
).
7.
R. O.
Doruk
and
L.
Aboshar
, “
Estimating the parameters of Fitzhugh–Nagumo neurons from neural spiking data
,”
Brain Sci.
9
,
364
(
2019
).
8.
A. C.
Jensen
,
S.
Ditlevsen
,
M.
Kessler
, and
O.
Papaspiliopoulos
, “
Markov chain Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo model
,”
Phys. Rev. E
86
,
041114
(
2012
).
9.
Y.
Che
,
L.
Geng
,
C.
Han
,
S.
Cui
, and
J.
Wang
, “
Parameter estimation of the FitzHugh-Nagumo model using noisy measurements for membrane potential
,”
Chaos
22
,
023139
(
2012
).
10.
X.
Lou
,
X.
Cai
, and
B.
Cui
, “
Parameter estimation of a class of neural systems with limit cycles
,”
Algorithms
11
,
169
(
2018
).
11.
T.
Wigren
, “Nonlinear identification of neuron models,” in 2015 IEEE Conference on Control Applications (CCA) (IEEE, 2015), pp. 1340–1346.
12.
A.
Arnold
and
A. L.
Lloyd
, “
An approach to periodic, time-varying parameter estimation using nonlinear filtering
,”
Inverse Problems
34
,
105005
(
2018
).
13.
A.
Fradkov
,
A.
Shepeljavyi
, and
A.
Rybalko
, “Identification of the FitzHugh-Nagumo neuron model based on the speed-gradient and filtering,” in 2022 Fourth International Conference Neurotechnologies and Neurointerfaces (CNN) (IEEE, 2022), pp. 29–31.
14.
A. L.
Fradkov
,
I. V.
Miroshnik
, and
V. O.
Nikiforov
,
Nonlinear and Adaptive Control of Complex Systems
(
Springer Netherlands
,
2013
).
15.
P.
Laguna
,
N. V.
Thakor
,
P.
Caminal
, and
R.
Jane
, “
Low-pass differentiators for biological signals with known spectra: Application to ECG signal processing
,”
IEEE Trans. Biomed. Eng.
37
,
420
425
(
1990
).
16.
A.
Loria
, “
Observers are unnecessary for output-feedback control of Lagrangian systems
,”
IEEE Trans. Autom. Control.
61
,
905
920
(
2016
).
17.
R. H.
Jaafar
and
S. S.
Saab
, “
Approximate differentiator with varying bandwidth for control tracking applications
,”
IEEE Control Syst. Lett.
5
,
1585
1590
(
2021
).
18.
H.
Qwakernaak
and
R.
Sivan
,
Linear Optimal Control Systems
(
Wiley, SPb.
,
1972
).
19.
I. V.
Miroshnik
,
V. O.
Nikiforov
, and
A. L.
Fradkov
,
Nonlinear and Adaptive Control of Complex Dynamic Systems
(
Nauka, SPb.
,
2000
) (in Russian).
You do not currently have access to this content.