We investigate the dynamics of nonlocally coupled Hindmarsh–Rose neurons, modified by coupling the induced magnetic flux to the membrane potential with a quadratic memristor of strength k . The nonlocal coupling consists of the interaction of each neuron with its neighbors within a fixed radius, which influence the membrane potential of the neuron with coupling intensity σ . For such local dynamics and network of interactions, we investigate how variations of k and σ affect the collective dynamics. We find that when increasing k as well as when increasing σ , coherence typically increases, except for small ranges of these parameters where the opposite behavior can occur. Besides affecting coherence, varying k also affects the pattern of bursts and spikes, namely, for large enough k , burst frequency is augmented, the number and amplitude of the spikes are reduced, and quiescent periods become longer. Results are displayed for an intermediate range of interactions with radius 1/4 of the network size, but we also varied the range of interactions, ranging from first-neighbor to all-to-all couplings, observing in all cases a qualitatively similar impact of induction.

1.
R.
FitzHugh
, “
Impulses and physiological states in theoretical models of nerve membrane
,”
Biophys. J.
1
(
6
),
445
466
(
1961
).
2.
C.
Morris
and
H.
Lecar
, “
Voltage oscillations in the barnacle giant muscle fiber
,”
Biophys. J.
35
(
1
),
193
213
(
1981
).
3.
J.
Hindmarsh
and
R.
Rose
, “
A model of the nerve impulse using two first-order differential equations
,”
Nature
296
(
5853
),
162
164
(
1982
).
4.
J. L.
Hindmarsh
and
R. M.
Rose
, “
A model of neuronal bursting using three coupled first order differential equations
,”
Proc. R. Soc. London, Ser. B
221
(
1222
),
87
102
(
1984
).
5.
M.
Lv
,
C.
Wang
,
G.
Ren
,
J.
Ma
, and
X.
Song
, “
Model of electrical activity in a neuron under magnetic flow effect
,”
Nonlinear Dyn.
85
,
1479
1490
(
2016
).
6.
K.
Usha
and
P. A.
Subha
, “
Hindmarsh-Rose neuron model with memristors
,”
BioSystems
178
,
1
9
(
2019
).
7.
F.
Parastesh
,
K.
Rajagopal
,
A.
Karthikeyan
,
A.
Alsaedi
,
T.
Hayat
, and
V.-T.
Pham
, “
Complex dynamics of a neuron model with discontinuous magnetic induction and exposed to external radiation
,”
Cognit. Neurodyn.
12
(
6
),
607
614
(
2018
).
8.
L.
Messee Goulefack
,
A. Cheage
Chamgoue
,
C.
Anteneodo
, and
R.
Yamapi
, “
Stability analysis of the Hindmarsh–Rose neuron under electromagnetic induction
,”
Nonlinear Dyn.
108
,
2627
2642
(
2022
).
9.
I. B.
Tagne Nkounga
,
L. M.
Goulefack
,
R.
Yamapi
, and
J.
Kurths
, “
Switching from active to non-active states in a birhythmic conductance-based neuronal model under electromagnetic induction
,”
Nonlinear Dyn.
111
,
771
(
2023
).
10.
R.
Levy
,
W. D.
Hutchison
,
A. M.
Lozano
, and
J. O.
Dostrovsky
, “
High-frequency synchronization of neuronal activity in the subthalamic nucleus of Parkinsonian patients with limb tremor
,”
J. Neurosci.
20
(
20
),
7766
7775
(
2000
).
11.
G. F.
Ayala
,
M. R.
Dichter
,
J.
Gumnit
,
H.
Matsumoto
, and
W. A.
Spencer
, “
Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a neurophysiological explanation of brief paroxysms
,”
Brain Res.
52
(
30
),
1
17
(
1973
).
12.
P. J.
Uhlhaas
and
S.
Wolf
, “
Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology
,”
Neuron
52
(
1
),
155
168
(
2006
).
13.
G.
Buzsáki
,
Rhythms of the Brain
(
Oxford University Press
,
2006
).
14.
A.
Schnitzler
and
J.
Gross
, “
Normal and pathological oscillatory communication in the brain
,”
Nat. Rev. Neurosci.
6
,
285
296
(
2005
).
15.
R.
Zemouri
,
C.
Devalland
,
S.
Valmary-Degano
, and
N.
Zerhouni
, “
Neural network: A future in pathology
,”
Ann. Pathol.
39
(
2
),
119
129
(
2019
).
16.
Y.
Kuramoto
and
D.
Battogtokh
, “
Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,”
Nonlin. Phen. Compl. Syst.
5
,
380
385
(
2002
), see http://www.j-npcs.org/online/vol2002/v5no4/v5no4p380.pdf.
17.
D. M.
Abrams
and
S. H.
Strogatz
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
,
174102
(
2004
).
18.
C.
Lainscsek
,
N.
Rungratsameetaweemana
,
S. S.
Cash
, and
T. J.
Sejnowski
, “
Cortical chimera states predict epileptic seizures
,”
Chaos
29
,
121106
(
2019
).
19.
H.
Sakaguchi
and
Y.
Kuramoto
, “
A soluble active rotator model showing phase transitions via mutual entrainment
,”
Prog. Theor. Phys.
76
,
576
(
1986
).
20.
D. M.
Abrams
,
R.
Mirollo
,
S. H.
Strogatz
, and
D. A.
Wiley
, “
Solvable model for chimera states of coupled oscillators
,”
Phys. Rev. Lett.
101
,
084103
(
2008
)
[PubMed]
21.
L.
Khaleghi
,
S.
Panahi
,
S. N.
Chowdhury
,
S.
Bogomolov
,
D.
Ghosh
, and
S.
Jafari
, “
Chimera states in a ring of map-based neurons
,”
Physica A
536
,
122596
(
2019
).
22.
L. V.
Gambuzza
,
A.
Buscarino
,
S.
Chessari
,
L.
Fortuna
,
R.
Meucci
, and
M.
Frasca
, “
Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators
,”
Phys. Rev. E
90
,
032905
(
2014
).
23.
M. R.
Tinsley
,
S.
Nkomo
, and
K.
Showalter
, “
Chimera and phase-cluster states in populations of coupled chemical oscillators
,”
Nat. Phys.
8
,
662
665
(
2012
).
24.
S.
Nkomo
,
M. R.
Tinsley
, and
K.
Showalter
, “
Chimera states in populations of nonlocally coupled chemical oscillators
,”
Phys. Rev. Lett.
110
,
244102
(
2013
).
25.
K.
Schönleber
,
C.
Zensen
,
A.
Heinrich
, and
K.
Krischer
, “
Pattern formation during the oscillatory photoelectrodissolution of n-type silicon: Turbulence, clusters and chimeras
,”
New J. Phys.
16
,
063024
(
2014
).
26.
S.
Nkomo
,
M. R.
Tinsley
, and
K.
Showalter
, “
Chimera and chimera-like states in populations of nonlocally coupled homogeneous and heterogeneous chemical oscillators
,”
Chaos
26
,
094826
(
2016
).
27.
F.
Böhm
,
A.
Zakharova
,
E.
Schöll
, and
K.
Lüdge
, “
Amplitude-phase coupling drives chimera states in globally coupled laser networks
,”
Phys. Rev. E
91
,
040901
(R) (
2015
).
28.
J.
Shena
,
J.
Hizanidis
,
V.
Kovanis
, and
G. P.
Tsironis
, “
Turbulent chimeras in large semiconductor laser arrays
,”
Sci. Rep.
7
,
42116
(
1017
).
29.
E. A.
Martens
,
S.
Thutupalli
,
A.
Fourrière
, and
O.
Hallatschek
, “
Chimera states in mechanical oscillator networks
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
10563
10567
(
2013
).
30.
T.
Bountis
,
V. G.
Kanas
,
J.
Hizanidis
, and
A.
Bezerianos
, “
Chimera states in a two–population network of coupled pendulum–like elements
,”
Eur. Phys. J. Spec. Top.
223
,
721
728
(
2014
).
31.
J.
Khouhak
,
Z.
Faghani
,
J. L.
Laugesen
, and
S.
Jafari
, “
The emergence of chimera states in a network of nephrons
,”
Chin. J. Phys.
63
,
402
409
(
2020
).
32.
Z.
Shahriari
,
F.
Parastesh
,
M.
Jalili
,
V.
Berec
,
J.
Ma
, and
S.
Jafari
, “
The role of coupling factors on the emergence of synchronization and chimera patterns in network of non-locally coupled pancreatic β -cells
,”
Europhys. Lett.
125
,
60001
(
2019
).
33.
B. K.
Bera
,
S.
Rakshit
,
D.
Ghosh
, and
J.
Kurths
, “
Spike chimera states and firing regularities in neuronal hypernetworks
,”
Chaos
29
,
053115
(
2019
).
34.
E.
Schöll
, “
Partial synchronization patterns in brain networks
,”
Europhys. Lett.
136
(1), 18001 (
2022
).
35.
S.
Kundu
and
D.
Ghosh
, “
Higher-order interactions promote chimera states
,”
Phys. Rev. E
105
(
4
),
L042202
(
2022
).
36.
O. E.
Omel’chenko
, “
Coherence–incoherence patterns in a ring of non-locally coupled phase oscillators
,”
Nonlinearity
26
,
2469
(
2013
).
37.
S. N.
Chowdhury
,
S.
Majhi
,
D.
Ghosh
, and
A.
Prasad
, “
Convergence of chaotic attractors due to interaction based on closeness
,”
Phys. Lett. A
383
(
35
),
125997
(
2019
).
38.
Q.
Li
,
H.
Zeng
, and
J.
Li
, “
Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria
,”
Nonlinear Dyn.
79
,
2295
2308
(
2015
).
39.
R.
Gopal
,
V. K.
Chandrasekar
,
A.
Venkatesan
, and
M.
Lakshmanan
, “
Observation and characterization of chimera states in coupled dynamical systems with nonlocal coupling
,”
Phys. Rev. E
89
(
5
),
052914
(
2014
).
40.
K.
Rajagopal
,
A. J. M.
Khalaf
,
F.
Parastesh
,
I.
Moroz
,
A.
Karthikeyan
, and
S.
Jafari
, “
Dynamical behavior and network analysis of an extended Hindmarsh-Rose neuron model
,”
Nonlinear Dyn.
98
,
477487
(
2019
).
41.
R.
Erichsen
and
L. G.
Brunnet
, “
Multistability in networks of Hindmarsh-Rose neurons
,”
Phys. Rev. E
78
,
061917
(
2008
).
42.
B. K.
Bera
,
D.
Ghosh
, and
M.
Lakshmanan
, “
Chimera states in bursting neurons
,”
Phys. Rev. E
93
,
012205
(
2016
).
43.
Z.
Wang
,
Y.
Xu
,
Y.
Li
,
T.
Kapitaniak
, and
J.
Kurths
, “
Chimera states in coupled Hindmarsh-Rose neurons with α -stable noise
,”
Chaos, Solitons Fractals
148
,
110976
(
2021
), ISSN 0960-0779
44.
S.
Aghababaei
,
S.
Balaraman
,
K.
Rajagopal
,
F.
Parastesh
,
S.
Panahi
, and
S.
Jafari
, “
Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network
,”
Chaos, Solitons Fractals
153
,
111498
(
2021
).
45.
T.
Remi
,
P. A.
Subha
, and
K.
Usha
, “
Collective dynamics of neural network with distance dependent field coupling
,”
Commun. Nonlin. Sci. Numer. Simul.
110
,
106390
(
2022
).
46.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer
,
Berlin
,
1984
).
47.
F.
Parastesh
,
S.
Jafari
,
H.
Azarnoush
,
Z.
Shahriari
,
Z.
Wangc
,
S.
Boccaletti
, and
M.
Perc
, “
Chimeras
,”
Phys. Rep.
898
,
1
114
(
2021
).
48.
M.
Lucas
,
D.
Fanelli
, and
A.
Stefanovska
, “
Nonautonomous driving induces stability in network of identical oscillators
,”
Phys. Rev. E
99
(
1
),
012309
(
2019
).
49.
G.
Ferraz de Arruda
,
G.
Petri
,
P. M.
Rodriguez
, and
Y.
Moreno
, “
Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs
,”
Nat. Commun.
14
,
1375
(
2023
).
You do not currently have access to this content.