We present a modular framework for generating synthetic power grids that consider the heterogeneity of real power grid dynamics but remain simple and tractable. This enables the generation of large sets of synthetic grids for a wide range of applications. For the first time, our synthetic model also includes the major drivers of fluctuations on short-time scales and a set of validators that ensure the resulting system dynamics are plausible. The synthetic grids generated are robust and show good synchronization under all evaluated scenarios, as should be expected for realistic power grids. A software package that includes an efficient Julia implementation of the framework is released as a companion to the paper.

1.
T.
Athay
,
R.
Podmore
, and
S.
Virmani
,
IEEE Trans. Power Appar. Syst.
169
,
573
584
(
1979
).
2.
C.
Grigg
,
P.
Wong
,
P.
Albrecht
,
R.
Allan
,
M.
Bhavaraju
,
R.
Billinton
,
Q.
Chen
,
C.
Fong
,
S.
Haddad
,
S.
Kuruganty
et al.,
IEEE Trans. Power Syst.
14
,
1010
1020
(
1999
).
3.
A. B.
Birchfield
,
K. M.
Gegner
,
T.
Xu
,
K. S.
Shetye
, and
T. J.
Overbye
,
IEEE Trans. Power Syst.
32
(2), 1502–1510 (
2017
).
4.
A. B.
Birchfield
,
T.
Xu
,
K. M.
Gegner
,
K. S.
Shetye
, and
T. J.
Overbye
,
IEEE Trans. Power Syst.
32
(4), 3258–3265 (
2017
).
5.
T.
Xu
,
A. B.
Birchfield
,
K. S.
Shetye
, and
T. J.
Overbye
, “Creation of synthetic electric grid models for transient stability studies,” in The 10th Bulk Power Systems Dynamics and Control Symposium (IREP 2017) (International Institute of Research and Education in Power System Dynamics, 2017).
6.
B.
Höflich
,
P.
Richard
,
J.
Völker
,
C.
Rehtanz
,
M.
Greve
,
B.
Gwisdorf
,
J.
Kays
,
T.
Noll
,
J.
Schwippe
,
A.
Seack
et al., “dena-Verteilnetzstudie Ausbau-Und Innovationsbedarf der Stromverteilnetze in Deutschland bis 2030” (Deutsche Energie-Agentur, Berlin, 2012).
7.
J.
Amme
,
G.
Pleßmann
,
J.
Bühler
,
L.
Hülk
,
E.
Kötter
, and
P.
Schwaegerl
,
J. Phys.: Conf. Ser.
977
, 012007 (
2018
).
8.
L.
Hülk
,
L.
Wienholt
,
I.
Cußmann
,
U. P.
Müller
,
C.
Matke
, and
E.
Kötter
,
Int. J. Sustainable Energy Plann. Manage.
13
, 79 (
2017
).
9.
Y.
Che
and
C.
Cheng
,
Chaos
31
,
053129
(
2021
).
10.
C.
Nauck
,
M.
Lindner
,
K.
Schürholt
,
H.
Zhang
,
P.
Schultz
,
J.
Kurths
,
I.
Isenhardt
, and
F.
Hellmann
,
New J. Phys.
24
,
043041
(
2022
).
11.
P. J.
Menck
,
J.
Heitzig
,
J.
Kurths
, and
H. J.
Schellnhuber
,
Nat. Commun.
5
, 3969 (
2014
).
12.
P.
Schultz
,
J.
Heitzig
, and
J.
Kurths
,
New J. Phys.
16
,
125001
(
2014
).
13.
H.
Kim
,
S. H.
Lee
, and
P.
Holme
,
New J. Phys.
17
,
113005
(
2015
).
14.
H.
Kim
,
S. H.
Lee
, and
P.
Holme
,
Phys. Rev. E
93
,
062318
(
2016
).
15.
F.
Hellmann
,
P.
Schultz
,
C.
Grabow
,
J.
Heitzig
, and
J.
Kurths
,
Sci. Rep.
6
, 29654 (
2016
).
16.
J.
Nitzbon
,
P.
Schultz
,
J.
Heitzig
,
J.
Kurths
, and
F.
Hellmann
,
New J. Phys.
19
,
033029
(
2017
).
17.
H.
Kim
,
M. J.
Lee
,
S. H.
Lee
, and
S. W.
Son
,
Chaos
29
,
103132
(
2019
).
18.
M. F.
Wolff
,
P. G.
Lind
, and
P.
Maass
,
Chaos
28
,
103120
(
2018
).
19.
C.
Nauck
,
M.
Lindner
,
K.
Schürholt
, and
F.
Hellmann
, “Towards dynamic stability assessment of power grid topologies using graph neural networks,” arXiv:2206.06369 [physics] (2023), see http://arxiv.org/abs/2206.06369.
20.
C.
Nauck
,
M.
Lindner
,
K.
Schürholt
, and
F.
Hellmann
, “Towards dynamic stability analysis of sustainable power grids using graph neural networks,” arXiv:2212.11130 [cs,eess] (2022), see https://www.climatechange.ai/papers/neurips2022/16.
21.
P.
Christensen
,
G. K.
Andersen
,
M.
Seidel
,
S.
Bolik
,
S.
Engelken
,
T.
Knueppel
,
A.
Krontiris
,
K.
Wuerflinger
,
T.
Bülo
,
J.
Jahn
et al., “High penetration of power electronic interfaced power sources and the potential contribution of grid forming converters,” Technical Report (European Network of Transmission System Operators for Electricity, 2020).
22.
R.
Kogler
,
A.
Plietzsch
,
P.
Schultz
, and
F.
Hellmann
,
PRX Energy
(
American Physical Society
,
2022
).
23.
D.
Witthaut
,
F.
Hellmann
,
J.
Kurths
,
S.
Kettemann
,
H.
Meyer-Ortmanns
, and
M.
Timme
,
Rev. Mod. Phys.
94
,
015005
(
2022
).
24.
A.
Plietzsch
,
R.
Kogler
,
S.
Auer
,
J.
Merino
,
G.
de Muro A
,
J.
Liße
,
C.
Vogel
, and
F.
Hellmann
,
SoftwareX
17
,
100861
(
2022
), ISSN 2352-7110, see https://www.sciencedirect.com/science/article/pii/S2352711021001345.
25.
P.
Tahchiev
,
F.
Leme
,
V.
Massol
, and
G.
Gregory
,
JUnit in Action
(
Manning Publications
,
2011
).
26.
P.
Schultz
,
J.
Heitzig
, and
J.
Kurths
,
Eur. Phys. J.: Spec. Top.
223
,
2593
(
2014
).
27.
ENTSO-E, see https://consultations.entsoe.eu/system-development/tyndp2020/consult_view/ for “Ten-Year Network Development Plan 2020—Main Report” (2020).
28.
T.
Brown
,
D.
Schlachtberger
,
A.
Kies
,
S.
Schramm
, and
M.
Greiner
,
Energy
160
,
720
739
(
2018
), ISSN 0360-5442, see https://www.sciencedirect.com/science/article/pii/S036054421831288X.
29.
J.
Egerer
, “Open source electricity model for Germany (ELMOD-DE),” Technical report DIW Data Documentation, 2016, see http://hdl.handle.net/10419/129782.
30.
H.
Taher
,
S.
Olmi
, and
E.
Schöll
,
Phys. Rev. E
100
,
062306
(
2019
).
31.
F.
Hofmann
,
J.
Hampp
,
F.
Neumann
,
T.
Brown
, and
J.
Hörsch
,
J. Open Source Software
6
,
3294
(
2021
).
32.
M.
Anvari
,
E.
Proedrou
,
B.
Schäfer
,
C.
Beck
,
H.
Kantz
, and
M.
Timme
,
Nat. Commun.
13
,
1
12
(
2022
).
33.
A.
Singh
,
P.
Eser
,
N.
Chokani
, and
R.
Abhari
,
Energies
8
,
14168
14181
(
2015
).
34.
J.
Machowski
and
J. W.
Bialek
,
Power System Dynamics—Stability and Control
(
Wiley & Sons
,
2008
).
35.
J.
Schiffer
,
R.
Ortega
,
A.
Astolfi
,
J.
Raisch
, and
T.
Sezi
,
Automatica
50
(10), 2457–2469 (
2014
).
36.
K.
Schmietendorf
,
J.
Peinke
,
R.
Friedrich
, and
O.
Kamps
,
Eur. Phys. J. Spec. Top.
223
,
2577
2592
(
2014
).
37.
G.
Andersson
, “Power system analysis,” Lecture 227-0526-00 Script, ETH Zürich, 2012.
38.
See https://www.dena.de/newsroom/publikationsdetailansicht/pub/dena-verteilnetzstudie-ausbau-und-innovationsbedarf-der-stromverteilnetze-in-deutschland-bis-2030/ for “dena 2012 dena-Verteilnetzstudie: Ausbau- und Innovationsbedarf der Stromverteilnetze in Deutschland bis 2030.”
39.
W.
Medjroubi
,
U. P.
Müller
,
M.
Scharf
,
C.
Matke
, and
D.
Kleinhans
,
Energy Rep.
3
,
14
(
2017
).
40.
P.
Schultz
,
F.
Hellmann
,
J.
Heitzig
, and
J.
Kurths
, “A network of networks approach to interconnected power grids,” arXiv:1701.06968 (2017).
41.
W.
Zhang
,
F.
Li
, and
L. M.
Tolbert
,
IEEE Trans. Power Syst.
22
,
2177
2186
(
2007
).
42.
C.
Coffrin
,
R.
Bent
,
K.
Sundar
,
Y.
Ng
, and
M.
Lubin
, “Powermodels.jl: An open-source framework for exploring power flow formulations,” in 2018 Power Systems Computation Conference (PSCC) (IEEE, 2018), pp. 1–8.
43.
A. B.
Birchfield
,
T.
Xu
, and
T. J.
Overbye
,
IEEE Trans. Power Syst.
33
,
6667
6674
(
2018
).
44.
European Committee for Electrotechnical Standardization, “Voltage characteristics of electricity supplied by public electricity networks,” standard DIN EN 50160:2020-11 (British Standards Institution (BSI), 2020).
45.
T.
Gonen
,
Electrical Power Transmission System Engineering: Analysis and Design
(
CRC Press
,
2014
), ISBN 9781482232226.
46.
F.
Milano
, Power System Modelling and Scripting, Power Systems (Springer, 2010).
47.
A.
Shokri Gazafroudi
,
F.
Neumann
, and
T.
Brown
,
Int. J. Electr. Power Energy Syst.
137
,
107702
(
2022
), ISSN 0142-0615, see https://www.sciencedirect.com/science/article/pii/S0142061521009297.
48.
J.
Apt
,
J. Power Sources
169
,
369
374
(
2007
).
49.
A.
Woyte
,
R.
Belmans
, and
J.
Nijs
,
Sol. Energy
81
,
195
206
(
2007
).
50.
M.
Anvari
,
G.
Lohmann
,
M.
Wächter
,
P.
Milan
,
E.
Lorenz
,
D.
Heinemann
,
M. R. R.
Tabar
, and
J.
Peinke
,
New J. Phys.
18
,
063027
(
2016
).
51.
A.
Wright
and
S.
Firth
,
Appl. Energy
84
,
389
403
(
2007
).
52.
A.
Monacchi
,
D.
Egarter
,
W.
Elmenreich
,
S.
D’Alessandro
, and
A. M.
Tonello
, “GREEND: An energy consumption dataset of households in Italy and Austria,” in 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm) (IEEE, 2014), pp. 511–516.
53.
L. R.
Gorjão
,
M.
Anvari
,
H.
Kantz
,
C.
Beck
,
D.
Witthaut
,
M.
Timme
, and
B.
Schäfer
,
IEEE Access
8
,
43082
43097
(
2020
).
54.
P.
Milan
,
M.
Wächter
, and
J.
Peinke
,
Phys. Rev. Lett.
110
,
138701
(
2013
).
55.
A. E.
Curtright
and
J.
Apt
,
Prog. Photovoltaics: Res. Appl.
16
,
241
247
(
2008
).
56.
K.
Schmietendorf
,
J.
Peinke
, and
O.
Kamps
,
Eur. Phys. J. B
90
,
1
6
(
2017
).
57.
M.
Anvari
,
B.
Werther
,
G.
Lohmann
,
M.
Wächter
,
J.
Peinke
, and
H. P.
Beck
,
Sol. Energy
157
,
735
743
(
2017
).
58.
A.
Marszal-Pomianowska
,
P.
Heiselberg
, and
O. K.
Larsen
,
Energy
103
,
487
501
(
2016
), ISSN 0360-5442.
59.
M.
Andreasson
,
E.
Tegling
,
H.
Sandberg
, and
K. H.
Johansson
, “Coherence in synchronizing power networks with distributed integral control,” in 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (IEEE, 2017), pp. 6327–6333.
60.
A.
Plietzsch
,
S.
Auer
,
J.
Kurths
, and
F.
Hellmann
,
Chaos
32
,
113114
(
2022
), ISSN 1054-1500, see https://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0122898/16499190/113114_1_online.pdf.
61.
X.
Zhang
,
S.
Hallerberg
,
M.
Matthiae
,
D.
Witthaut
, and
M.
Timme
,
Sci. Adv.
5
,
eaav1027
(
2019
), see https://www.science.org/doi/abs/10.1126/sciadv.aav1027.
62.
B.
Schäfer
,
C.
Beck
,
K.
Aihara
,
D.
Witthaut
, and
M.
Timme
,
Nat. Energy
3
(2), 119–126 (
2018
).
63.
M.
Lange
and
M.
Zobel
, “NOVAREF, Erstellung neuer Referenzlastprofile zur Auslegung, Dimensionierung und Wirtschaftlichkeitsberechnung von Hausenergieversorgungssystemen,” Technical Report (NEXT ENERGY,
2016
).
64.
H.
Haehne
,
K.
Schmietendorf
,
S.
Tamrakar
,
J.
Peinke
, and
S.
Kettemann
,
Phys. Rev. E
99
,
050301
(
2019
).
65.
A.
Büttner
and
A.
Plietzsch
(
2023
). “,”
GitHub
. https://github.com/PIK-ICoNe/SyntheticPowerGrid_Paper_Companion
66.
A.
Büttner
,
A.
Plietzsch
,
M.
Bornemann
, and
F.
Hellmann
, “Synthetic power grids package,”
GitHub
. https://github.com/PIK-ICoNe/SyntheticPowerGrids.jl
You do not currently have access to this content.