Regime switching is ubiquitous in many complex dynamical systems with multiscale features, chaotic behavior, and extreme events. In this paper, a causation entropy boosting (CEBoosting) strategy is developed to facilitate the detection of regime switching and the discovery of the dynamics associated with the new regime via online model identification. The causation entropy, which can be efficiently calculated, provides a logic value of each candidate function in a pre-determined library. The reversal of one or a few such causation entropy indicators associated with the model calibrated for the current regime implies the detection of regime switching. Despite the short length of each batch formed by the sequential data, the accumulated value of causation entropy corresponding to a sequence of data batches leads to a robust indicator. With the detected rectification of the model structure, the subsequent parameter estimation becomes a quadratic optimization problem, which is solved using closed analytic formulas. Using the Lorenz 96 model, it is shown that the causation entropy indicator can be efficiently calculated, and the method applies to moderately large dimensional systems. The CEBoosting algorithm is also adaptive to the situation with partial observations. It is shown via a stochastic parameterized model that the CEBoosting strategy can be combined with data assimilation to identify regime switching triggered by the unobserved latent processes. In addition, the CEBoosting method is applied to a nonlinear paradigm model for topographic mean flow interaction, demonstrating the online detection of regime switching in the presence of strong intermittency and extreme events.

1.
A. J.
Majda
,
Introduction to Turbulent Dynamical Systems in Complex Systems
(
Springer
,
2016
).
2.
A.
Majda
and
X.
Wang
,
Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows
(
Cambridge University Press
,
2006
).
3.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(
CRC Press
,
2018
).
4.
D.
Baleanu
,
J. A. T.
Machado
, and
A. C. J.
Luo
,
Fractional Dynamics and Control
(
Springer Science & Business Media
,
2011
).
5.
T.
Deisboeck
and
J.
Yasha Kresh
,
Complex Systems Science in Biomedicine
(
Springer Science & Business Media
,
2007
).
6.
J.
Stelling
,
A.
Kremling
,
M.
Ginkel
, and
K.
Bettenbrock
,
ED Gilles of Book: Foundations of Systems Biology
(
MIT Press
,
2001
).
7.
S. A.
Sheard
and
A.
Mostashari
, “
Principles of complex systems for systems engineering
,”
Syst. Eng.
12
(
4
),
295
311
(
2009
).
8.
J. M.
Amundson
,
M.
Fahnestock
,
M.
Truffer
,
J.
Brown
,
M. P.
Lüthi
, and
R. J.
Motyka
, “
Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland
,”
J. Geophys. Res.: Earth Surf.
115
(
F1
),
F01005
(
2010
).
9.
A. J.
Majda
and
B.
Gershgorin
, “
Elementary models for turbulent diffusion with complex physical features: Eddy diffusivity, spectrum and intermittency
,”
Philos. Trans. R. Soc. A
371
(
1982
),
20120184
(
2013
).
10.
A. V.
Holden
,
M.
Markus
, and
H. G.
Othmer
,
Nonlinear Wave Processes in Excitable Media
(
Springer
,
2013
), Vol. 244.
11.
B.
Lindner
,
J.
Garcıa-Ojalvo
,
A.
Neiman
, and
L.
Schimansky-Geier
, “
Effects of noise in excitable systems
,”
Phys. Rep.
392
(
6
),
321
424
(
2004
).
12.
N.
Chen
,
A. J.
Majda
, and
X. T.
Tong
, “
Spatial localization for nonlinear dynamical stochastic models for excitable media
,”
Chin. Ann. Math. Ser. B
40
(
6
),
891
924
(
2019
).
13.
W. K.-M.
Lau
and
D. E.
Waliser
,
Intraseasonal Variability in the Atmosphere-Ocean Climate System
(
Springer Science & Business Media
,
2011
).
14.
A. J.
Clarke
,
An Introduction to the Dynamics of El Niño and the Southern Oscillation
(
Elsevier
,
2008
).
15.
E. G.
Altmann
and
H.
Kantz
, “
Recurrence time analysis, long-term correlations, and extreme events
,”
Phys. Rev. E
71
(
5
),
056106
(
2005
).
16.
C. A.
Bronkhorst
,
H.
Cho
,
P. W.
Marcy
,
S. A.
Vander Wiel
,
S.
Gupta
,
D.
Versino
,
V.
Anghel
, and
G. T.
Gray III
, “
Local micro-mechanical stress conditions leading to pore nucleation during dynamic loading
,”
Int. J. Plast.
137
,
102903
(
2021
).
17.
A. J.
Majda
and
N.
Chen
, “
Model error, information barriers, state estimation and prediction in complex multiscale systems
,”
Entropy
20
(
9
),
644
(
2018
).
18.
S.
Wiggins
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
(
Springer Science & Business Media
,
2003
), Vol. 2.
19.
E.
Kalnay
,
Atmospheric Modeling, Data Assimilation and Predictability
(
Cambridge University Press
,
2003
).
20.
K.
Law
,
A.
Stuart
, and
K.
Zygalakis
,
Data Assimilation: A Mathematical Introduction
(
Springer
,
2015
), Vol. 62.
21.
M.
Branicki
,
N.
Chen
, and
A. J.
Majda
, “
Non-Gaussian test models for prediction and state estimation with model errors
,”
Chin. Ann. Math. Ser. B
34
(
1
),
29
64
(
2013
).
22.
D. A.
Freedman
,
Statistical Models: Theory and Practice
(
Cambridge University Press
,
2009
).
23.
X.
Yan
and
X.
Su
,
Linear Regression Analysis: Theory and Computing
(
World Scientific
,
2009
).
24.
A. J.
Majda
and
J.
Harlim
, “
Physics constrained nonlinear regression models for time series
,”
Nonlinearity
26
(
1
),
201
(
2012
).
25.
J.
Harlim
,
A.
Mahdi
, and
A. J.
Majda
, “
An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models
,”
J. Comput. Phys.
257
,
782
812
(
2014
).
26.
N.
Chen
and
A. J.
Majda
, “
Conditional Gaussian systems for multiscale nonlinear stochastic systems: Prediction, state estimation and uncertainty quantification
,”
Entropy
20
(
7
),
509
(
2018
).
27.
N.
Chen
,
Y.
Li
, and
H.
Liu
, “
Conditional Gaussian nonlinear system: A fast preconditioner and a cheap surrogate model for complex nonlinear systems
,”
Chaos
32
(
5
),
053122
(
2022
).
28.
S. E.
Ahmed
,
S.
Pawar
,
O.
San
,
A.
Rasheed
,
T.
Iliescu
, and
B. R.
Noack
, “
On closures for reduced order models—A spectrum of first-principle to machine-learned avenues
,”
Phys. Fluids
33
(
9
),
091301
(
2021
).
29.
S.
Hijazi
,
G.
Stabile
,
A.
Mola
, and
G.
Rozza
, “
Data-driven POD-Galerkin reduced order model for turbulent flows
,”
J. Comput. Phys.
416
,
109513
(
2020
).
30.
K. K.
Lin
and
F.
Lu
, “
Data-driven model reduction, Wiener projections, and the Koopman-Mori-Zwanzig formalism
,”
J. Comput. Phys.
424
,
109864
(
2021
).
31.
B.
Peherstorfer
and
K.
Willcox
, “
Dynamic data-driven reduced-order models
,”
Comput. Methods Appl. Mech. Eng.
291
,
21
41
(
2015
).
32.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci.
113
(
15
),
3932
3937
(
2016
).
33.
S. H.
Rudy
,
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Data-driven discovery of partial differential equations
,”
Sci. Adv.
3
(
4
),
e1602614
(
2017
).
34.
U.
Fasel
,
J. N.
Kutz
,
B. W.
Brunton
, and
S. L.
Brunton
, “
Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control
,”
Proc. R. Soc. A
478
(
2260
),
20210904
(
2022
).
35.
H.
Schaeffer
,
R.
Caflisch
,
C. D.
Hauck
, and
S.
Osher
, “
Sparse dynamics for partial differential equations
,”
Proc. Natl. Acad. Sci.
110
(
17
),
6634
6639
(
2013
).
36.
S. A.
Billings
and
H.-L.
Wei
, “
Sparse model identification using a forward orthogonal regression algorithm aided by mutual information
,”
IEEE Trans. Neural Networks
18
(
1
),
306
310
(
2007
).
37.
R.
Mojgani
,
A.
Chattopadhyay
, and
P.
Hassanzadeh
, “
Discovery of interpretable structural model errors by combining bayesian sparse regression and data assimilation: A chaotic Kuramoto–Sivashinsky test case
,”
Chaos
32
(
6
),
061105
(
2022
).
38.
M.
Quade
,
M.
Abel
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Sparse identification of nonlinear dynamics for rapid model recovery
,”
Chaos
28
(
6
),
063116
(
2018
).
39.
N.
Chen
, “
Learning nonlinear turbulent dynamics from partial observations via analytically solvable conditional statistics
,”
J. Comput. Phys.
418
,
109635
(
2020
).
40.
P.
Kim
,
J.
Rogers
,
J.
Sun
, and
E.
Bollt
, “
Causation entropy identifies sparsity structure for parameter estimation of dynamic systems
,”
J. Comput. Nonlinear Dyn.
12
(
1
),
011008
(
2017
).
41.
A. A. R.
AlMomani
,
J.
Sun
, and
E.
Bollt
, “
How entropic regression beats the outliers problem in nonlinear system identification
,”
Chaos
30
(
1
),
013107
(
2020
).
42.
J.
Fish
,
A.
DeWitt
,
A. A. R.
AlMomani
,
P. J.
Laurienti
, and
E.
Bollt
, “
Entropic regression with neurologically motivated applications
,”
Chaos
31
(
11
),
113105
(
2021
).
43.
A. A.
AlMomani
and
E.
Bollt
, “Erfit: Entropic regression fit matlab package, for data-driven system identification of underlying dynamic equations,” arXiv:2010.02411 (2020).
44.
H.
Xiao
,
J.-L.
Wu
,
J.-X.
Wang
,
R.
Sun
, and
C. J.
Roy
, “
Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach
,”
J. Comput. Phys.
324
,
115
136
(
2016
).
45.
X.-L.
Zhang
,
H.
Xiao
,
X.
Luo
, and
G.
He
, “
Ensemble Kalman method for learning turbulence models from indirect observation data
,”
J. Fluid Mech.
949
,
A26
(
2022
).
46.
T.
Schneider
,
A. M.
Stuart
, and
J.-L.
Wu
, “
Ensemble Kalman inversion for sparse learning of dynamical systems from time-averaged data
,”
J. Comput. Phys.
470
,
111559
(
2022
).
47.
S.
Pawar
,
S. E.
Ahmed
,
O.
San
, and
A.
Rasheed
, “
Data-driven recovery of hidden physics in reduced order modeling of fluid flows
,”
Phys. Fluids
32
(
3
),
036602
(
2020
).
48.
A.
Moosavi
,
R.
Stefanescu
, and
A.
Sandu
, “Efficient construction of local parametric reduced order models using machine learning techniques,” arXiv:1511.02909 (2015).
49.
O.
San
and
R.
Maulik
, “
Extreme learning machine for reduced order modeling of turbulent geophysical flows
,”
Phys. Rev. E
97
(
4
),
042322
(
2018
).
50.
A.
Beck
and
M.
Kurz
, “
A perspective on machine learning methods in turbulence modeling
,”
GAMM-Mitteilungen
44
(
1
),
e202100002
(
2021
).
51.
J.-X.
Wang
,
J.-L.
Wu
, and
H.
Xiao
, “
Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
,”
Phys. Rev. Fluids
2
(
3
),
034603
(
2017
).
52.
J.-L.
Wu
,
H.
Xiao
, and
E.
Paterson
, “
Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework
,”
Phys. Rev. Fluids
3
(
7
),
074602
(
2018
).
53.
H.-J.
Rong
,
N.
Sundararajan
,
G.-B.
Huang
, and
P.
Saratchandran
, “
Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
,”
Fuzzy Sets Syst.
157
(
9
),
1260
1275
(
2006
).
54.
T. J. J.
Lombaerts
,
H. O.
Huisman
,
Q. P.
Chu
,
J. A.
Mulder
, and
D. A.
Joosten
, “
Nonlinear reconfiguring flight control based on online physical model identification
,”
J. Guid. Control Dyn.
32
(
3
),
727
748
(
2009
).
55.
Y.
Kopsinis
,
K.
Slavakis
, and
S.
Theodoridis
, “
Online sparse system identification and signal reconstruction using projections onto weighted 1 balls
,”
IEEE Trans. Signal Process.
59
(
3
),
936
952
(
2010
).
56.
N.
Kalouptsidis
,
G.
Mileounis
,
B.
Babadi
, and
V.
Tarokh
, “
Adaptive algorithms for sparse system identification
,”
Signal Process.
91
(
8
),
1910
1919
(
2011
).
57.
T.
Chen
,
M. S.
Andersen
,
L.
Ljung
,
A.
Chiuso
, and
G.
Pillonetto
, “
System identification via sparse multiple kernel-based regularization using sequential convex optimization techniques
,”
IEEE Trans. Autom. Control
59
(
11
),
2933
2945
(
2014
).
58.
S.
Srinivasan
,
J.
Billeter
, and
D.
Bonvin
, “
Sequential model identification of reaction systems—The missing path between the incremental and simultaneous approaches
,”
AIChE J.
65
(
4
),
1211
1221
(
2019
).
59.
G. A.
Gottwald
and
S.
Reich
, “
Supervised learning from noisy observations: Combining machine-learning techniques with data assimilation
,”
Physica D
423
,
132911
(
2021
).
60.
A.
Wikner
,
J.
Pathak
,
B. R.
Hunt
,
I.
Szunyogh
,
M.
Girvan
, and
E.
Ott
, “
Using data assimilation to train a hybrid forecast system that combines machine-learning and knowledge-based components
,”
Chaos
31
(
5
),
053114
(
2021
).
61.
T.
Schneider
,
A. M.
Stuart
, and
J.-L.
Wu
, “
Learning stochastic closures using ensemble Kalman inversion
,”
Trans. Math. Appl.
5
(
1
),
tnab003
(
2021
).
62.
R. E.
Kalman
, “
A new approach to linear filtering and prediction problems
,”
J. Basic Eng.
82
(
1
),
35
45
(
1960
).
63.
R.
Tibshirani
, “
Regression shrinkage and selection via the LASSO
,”
J. R. Stat. Soc., Ser. B
58
(
1
),
267
288
(
1996
).
64.
J.
Elinger
, “Information theoretic causality measures for parameter estimation and system identification,” Ph.D. thesis (Georgia Institute of Technology, 2020).
65.
J.
Elinger
and
J.
Rogers
, “Causation entropy method for covariate selection in dynamic models,” in 2021 American Control Conference (ACC) (IEEE, 2021), pp. 2842–2847.
66.
L.
Breiman
, “
Bagging predictors
,”
Mach. Learn.
24
,
123
140
(
1996
).
67.
Y.
Freund
and
R. E.
Schapire
et al., “Experiments with a new boosting algorithm,” in ICML (Citeseer, 1996), Vol. 96, pp. 148–156.
68.
J. H.
Friedman
, “
Stochastic gradient boosting
,”
Comput. Stat. Data Anal.
38
(
4
),
367
378
(
2002
).
69.
R. E.
Schapire
and
Y.
Freund
, “
Boosting: Foundations and algorithms
,”
Kybernetes
42
(
1
),
164
166
(
2013
).
70.
T.
Chen
and
C.
Guestrin
, “
Xgboost: A scalable tree boosting system
,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(
2016
), pp.
785
794
.
71.
C. J.
Quinn
,
N.
Kiyavash
, and
T. P.
Coleman
, “
Directed information graphs
,”
IEEE Trans. Inf. Theory
61
(
12
),
6887
6909
(
2015
).
72.
N.
Chen
and
Y.
Zhang
, “
A causality-based learning approach for discovering the underlying dynamics of complex systems from partial observations with stochastic parameterization
,”
Physica D
449
,
133743
(
2023
).
73.
A. D.
Wyner
, “
A definition of conditional mutual information for arbitrary ensembles
,”
Inf. Control
38
(
1
),
51
59
(
1978
).
74.
J.
Massey
et al., Causality, feedback and directed information,” in Proceedings of International Symposium on Information Theory and its Applications (ISITA-90) (IEEE, 1990), pp. 303–305.
75.
T.
Schreiber
, “
Measuring information transfer
,”
Phys. Rev. Lett.
85
(
2
),
461
(
2000
).
76.
A.
Lozano-Durán
,
H.
Jane Bae
, and
M. P.
Encinar
, “
Causality of energy-containing eddies in wall turbulence
,”
J. Fluid Mech.
882
,
A2
(
2020
).
77.
A.
Lozano-Durán
and
G.
Arranz
, “
Information-theoretic formulation of dynamical systems: Causality, modeling, and control
,”
Phys. Rev. Res.
4
(
2
),
023195
(
2022
).
78.
R.
Vicente
,
M.
Wibral
,
M.
Lindner
, and
G.
Pipa
, “
Transfer entropy a model-free measure of effective connectivity for the neurosciences
,”
J. Comput. Neurosci.
30
,
45
67
(
2011
).
79.
T.
Bossomaier
,
L.
Barnett
,
M.
Harré
,
J. T.
Lizier
,
T.
Bossomaier
,
L.
Barnett
,
M.
Harré
, and
J. T.
Lizier
,
Transfer Entropy
(
Springer
,
2016
).
80.
J.
Sun
and
E. M.
Bollt
, “
Causation entropy identifies indirect influences, dominance of neighbors and anticipatory couplings
,”
Physica D
267
,
49
57
(
2014
).
81.
N.
Branchini
,
V.
Aglietti
,
N.
Dhir
, and
T.
Damoulas
, “Causal entropy optimization,” arXiv:2208.10981 (2022).
82.
J.
Sun
,
D.
Taylor
, and
E. M.
Bollt
, “
Causal network inference by optimal causation entropy
,”
SIAM J. Appl. Dyn. Syst.
14
(
1
),
73
106
(
2015
).
83.
R. E.
Bellman
,
Dynamic Programming Treatment of the Traveling Salesman Problem
(
RAND Corporation
,
1961
).
84.
M. K.
Tippett
,
R.
Kleeman
, and
Y.
Tang
, “
Measuring the potential utility of seasonal climate predictions
,”
Geophys. Res. Lett.
31
(
22
),
L22201
, https://doi.org/10.1029/2004GL021575 (
2004
).
85.
R.
Kleeman
, “
Information theory and dynamical system predictability
,”
Entropy
13
(
3
),
612
649
(
2011
).
86.
M.
Branicki
and
A. J.
Majda
, “
Quantifying uncertainty for predictions with model error in non-Gaussian systems with intermittency
,”
Nonlinearity
25
(
9
),
2543
(
2012
).
87.
L.
Barnett
,
A. B.
Barrett
, and
A. K.
Seth
, “
Granger causality and transfer entropy are equivalent for gaussian variables
,”
Phys. Rev. Lett.
103
(
23
),
238701
(
2009
).
88.
A.
Shojaie
and
E. B.
Fox
, “
Granger causality: A review and recent advances
,”
Annu. Rev. Stat. Appl.
9
,
289
319
(
2022
).
89.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
(
2
),
130
141
(
1963
).
90.
C.
Sparrow
,
The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors
(
Springer Science & Business Media
,
2012
), Vol. 41.
91.
H.
Haken
, “
Analogy between higher instabilities in fluids and lasers
,”
Phys. Lett. A
53
(
1
),
77
78
(
1975
).
92.
E.
Knobloch
, “
Chaos in the segmented disc dynamo
,”
Phys. Lett. A
82
(
9
),
439
440
(
1981
).
93.
M.
Gorman
,
P. J.
Widmann
, and
K. A.
Robbins
, “
Nonlinear dynamics of a convection loop: A quantitative comparison of experiment with theory
,”
Physica D
19
(
2
),
255
267
(
1986
).
94.
N.
Hemati
, “
Strange attractors in brushless DC motors
,”
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
41
(
1
),
40
45
(
1994
).
95.
K. M.
Cuomo
and
A. V.
Oppenheim
, “
Circuit implementation of synchronized chaos with applications to communications
,”
Phys. Rev. Lett.
71
(
1
),
65
(
1993
).
96.
D.
Poland
, “
Cooperative catalysis and chemical chaos: A chemical model for the lorenz equations
,”
Physica D
65
(
1-2
),
86
99
(
1993
).
97.
S. I.
Tzenov
, “Strange attractors characterizing the osmotic instability,” arXiv:1406.0979 (2014).
98.
E. N.
Lorenz
, “Predictability: A problem partly solved,” in Proceedings of Seminar on Predictability (Reading, 1996), Vol. 1.
99.
D. S.
Wilks
, “
Effects of stochastic parametrizations in the Lorenz’96 system
,”
Q. J. R. Meteorol. Soc.
131
(
606
),
389
407
(
2005
).
100.
Y.
Lee
and
A. J.
Majda
, “
State estimation and prediction using clustered particle filters
,”
Proceedings of the National Academy of Sciences
113
(
51
),
14609
14614
(
2016
).
101.
H. M.
Arnold
,
I. M.
Moroz
, and
T. N.
Palmer
, “
Stochastic parametrizations and model uncertainty in the Lorenz’96 system
,”
Philos. Trans. R. Soc. A
371
(
1991
),
20110479
(
2013
).
102.
N.
Chen
and
A. J.
Majda
, “
Beating the curse of dimension with accurate statistics for the Fokker–Planck equation in complex turbulent systems
,”
Proc. Natl. Acad. Sci.
114
(
49
),
12864
12869
(
2017
).
103.
A.
Majda
,
Introduction to PDEs and Waves for the Atmosphere and Ocean
(
American Mathematical Society
,
2003
), Vol. 9.
104.
G. K.
Vallis
,
Atmospheric and Oceanic Fluid Dynamics
(
Cambridge University Press
,
2017
).
105.
W. W.
Grabowski
, “
An improved framework for superparameterization
,”
J. Atmos. Sci.
61
(
15
),
1940
1952
(
2004
).
106.
D. J.
Gagne
,
H. M.
Christensen
,
A. C.
Subramanian
, and
A. H.
Monahan
, “
Machine learning for stochastic parameterization: Generative adversarial networks in the Lorenz’96 model
,”
J. Adv. Model. Earth Syst.
12
(
3
),
e2019MS001896
(
2020
).
107.
A.
Chattopadhyay
,
P.
Hassanzadeh
, and
D.
Subramanian
, “
Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: Reservoir computing, artificial neural network, and long short-term memory network
,”
Nonlinear Process. Geophys.
27
(
3
),
373
389
(
2020
).
108.
K.
Bergemann
and
S.
Reich
, “
A localization technique for ensemble Kalman filters
,”
Q. J. R. Meteorol. Soc.
136
(
651
),
1636
1643
(
2010
).
109.
J. L.
Anderson
, “
Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter
,”
Physica D
230
(
1-2
),
99
111
(
2007
).
110.
T.
Janjić
,
L.
Nerger
,
A.
Albertella
,
J.
Schröter
, and
S.
Skachko
, “
On domain localization in ensemble-based Kalman filter algorithms
,”
Mon. Weather Rev.
139
(
7
),
2046
2060
(
2011
).
111.
A. J.
Majda
and
J.
Harlim
,
Filtering Complex Turbulent Systems
(
Cambridge University Press
,
2012
).
112.
A. J.
Majda
,
I.
Timofeyev
, and
E.
Vanden-Eijnden
, “
Systematic strategies for stochastic mode reduction in climate
,”
J. Atmos. Sci.
60
(
14
),
1705
1722
(
2003
).
113.
B.
Gershgorin
,
J.
Harlim
, and
A. J.
Majda
, “
Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation
,”
J. Comput. Phys.
229
(
1
),
32
57
(
2010
).
114.
B.
Gershgorin
,
J.
Harlim
, and
A. J.
Majda
, “
Test models for improving filtering with model errors through stochastic parameter estimation
,”
J. Comput. Phys.
229
(
1
),
1
31
(
2010
).
115.
C. W.
Gardiner
, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer Series in Synergetics Vol. 13 (Springer-Verlag, Berlin, Heidelberg, 2004).
116.
N.
Chen
,
Stochastic Methods for Modeling and Predicting Complex Dynamical Systems: Uncertainty Quantification, State Estimation, and Reduced-Order Models
(
Springer Nature
,
2023
).
117.
M.
Branicki
and
A. J.
Majda
, “
Dynamic stochastic superresolution of sparsely observed turbulent systems
,”
J. Comput. Phys.
241
,
333
363
(
2013
).
118.
M.
Branicki
,
A. J.
Majda
, and
K. J. H.
Law
, “Accuracy of some approximate Gaussian filters for the Navier-Stokes equation in the presence of model error,”
Multiscale Model. Simul.
16
(4),
1756
1794
(2018).
119.
G.
Evensen
and
P.
Jan Van Leeuwen
, “
An ensemble Kalman smoother for nonlinear dynamics
,”
Mon. Weather Rev.
128
(
6
),
1852
1867
(
2000
).
120.
C. C.
Chuang
(2023). “,”
Github
, https://github.com/ChuanqiChenCC/CEBoosting
You do not currently have access to this content.