We study a system of four identical globally coupled phase oscillators with a biharmonic coupling function. Its dimension and the type of coupling make it the minimal system of Kuramoto-type (both in the sense of the phase space’s dimension and the number of harmonics) that supports chaotic dynamics. However, to the best of our knowledge, there is still no numerical evidence for the existence of chaos in this system. The dynamics of such systems is tightly connected with the action of the symmetry group on its phase space. The presence of symmetries might lead to an emergence of chaos due to scenarios involving specific heteroclinic cycles. We suggest an approach for searching such heteroclinic cycles and showcase first examples of chaos in this system found by using this approach.

1.
C.
Bick
,
P.
Ashwin
, and
A.
Rodrigues
, “
Chaos in generically coupled phase oscillator networks with nonpairwise interactions
,”
Chaos
26
,
094814
(
2016
).
2.
E. A.
Grines
and
G. V.
Osipov
, “
Heteroclinic and homoclinic structures in the system of four identical globally coupled phase oscillators with nonpairwise interactions
,”
Regul. Chaotic Dyn.
23
,
974
982
(
2018
).ote
3.
A. T.
Winfree
, “
Biological rhythms and the behavior of populations of coupled oscillators
,”
J. Theor. Biol.
16
,
15
42
(
1967
).
4.
A. T.
Winfree
,
The Geometry of Biological Time
(
Springer
,
1980
), Vol. 2.
5.
R.
Berner
,
S.
Yanchuk
,
Y.
Maistrenko
, and
E.
Schöll
, “
Generalized splay states in phase oscillator networks
,”
Chaos
31
,
073128
(
2021
).
6.
I.
León
and
D.
Pazó
, “
Enlarged Kuramoto model: Secondary instability and transition to collective chaos
,”
Phys. Rev. E
105
,
L042201
(
2022
).
7.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
,
137
185
(
2005
).
8.
A.
Pikovsky
and
M.
Rosenblum
, “
Dynamics of globally coupled oscillators: Progress and perspectives
,”
Chaos
25
,
097616
(
2015
).
9.
T.
Stankovski
,
T.
Pereira
,
P. V. E.
McClintock
, and
A.
Stefanovska
, “
Coupling functions: Universal insights into dynamical interaction mechanisms
,”
Rev. Mod. Phys.
89
,
045001
(
2017
).
10.
Y.
Kuramoto
, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics (Springer, 1975), pp. 420–422.
11.
Y.
Kuramoto
, “Chemical turbulence,” in Chemical Oscillations, Waves, and Turbulence (Springer, 1984), pp. 111–140.
12.
H.
Sakaguchi
and
Y.
Kuramoto
, “
A soluble active rotater model showing phase transitions via mutual entertainment
,”
Prog. Theor. Phys.
76
,
576
581
(
1986
).
13.
O. V.
Popovych
,
Y. L.
Maistrenko
, and
P. A.
Tass
, “
Phase chaos in coupled oscillators
,”
Phys. Rev. E
71
,
065201
(
2005
).
14.
D.
Topaj
and
A.
Pikovsky
, “
Reversibility vs synchronization in oscillator lattices
,”
Phys. D
170
,
118
130
(
2002
).
15.
O. A.
Burylko
, “
Collective dynamics and bifurcations in symmetric networks of phase oscillators. II
,”
J. Math. Sci.
253
,
204
229
(
2021
).
16.
C.
Bick
,
M. J.
Panaggio
, and
E. A.
Martens
, “
Chaos in Kuramoto oscillator networks
,”
Chaos
28
,
071102
(
2018
).
17.
O.
Burylko
,
E. A.
Martens
, and
C.
Bick
, “
Symmetry breaking yields chimeras in two small populations of Kuramoto-type oscillators
,”
Chaos
32
,
093109
(
2022
).
18.
P.
Ashwin
and
O.
Burylko
, “
Weak chimeras in minimal networks of coupled phase oscillators
,”
Chaos
25
,
013106
(
2015
).
19.
C.
Bick
and
P.
Ashwin
, “
Chaotic weak chimeras and their persistence in coupled populations of phase oscillators
,”
Nonlinearity
29
,
1468
(
2016
).
20.
C.
Bick
, “
Isotropy of angular frequencies and weak chimeras with broken symmetry
,”
J. Nonlinear Sci.
27
,
605
626
(
2017
).
21.
C.
Bick
,
E.
Gross
,
H. A.
Harrington
, and
M. T.
Schaub
, “What are higher-order networks?,” arXiv:2104.11329 (2021).
22.
S.
Majhi
,
M.
Perc
, and
D.
Ghosh
, “
Dynamics on higher-order networks: A review
,”
J. R. Soc. Interface
19
,
20220043
(
2022
).
23.
P.
Ashwin
and
A.
Rodrigues
, “
Hopf normal form with S N symmetry and reduction to systems of nonlinearly coupled phase oscillators
,”
Phys. D
325
,
14
24
(
2016
).
24.
I.
León
and
D.
Pazó
, “
Phase reduction beyond the first order: The case of the mean-field complex Ginzburg-Landau equation
,”
Phys. Rev. E
100
,
012211
(
2019
).
25.
E.
Gengel
,
E.
Teichmann
,
M.
Rosenblum
, and
A.
Pikovsky
, “
High-order phase reduction for coupled oscillators
,”
J. Phys.: Complex.
2
,
015005
(
2020
).
26.
C.
Bick
, “
Heteroclinic switching between chimeras
,”
Phys. Rev. E
97
,
050201
(
2018
).
27.
C.
Bick
, “
Heteroclinic dynamics of localized frequency synchrony: Heteroclinic cycles for small populations
,”
J. Nonlinear Sci.
29
,
2547
2570
(
2019
).
28.
C.
Bick
and
A.
Lohse
, “
Heteroclinic dynamics of localized frequency synchrony: Stability of heteroclinic cycles and networks
,”
J. Nonlinear Sci.
29
,
2571
2600
(
2019
).
29.
M.
Wolfrum
and
O. E.
Omel’chenko
, “
Chimera states are chaotic transients
,”
Phys. Rev. E
84
,
015201
(
2011
).
30.
Y.
Suda
and
K.
Okuda
, “
Persistent chimera states in nonlocally coupled phase oscillators
,”
Phys. Rev. E
92
,
060901
(
2015
).
31.
F.
Parastesh
,
S.
Jafari
,
H.
Azarnoush
,
Z.
Shahriari
,
Z.
Wang
,
S.
Boccaletti
, and
M.
Perc
, “
Chimeras
,”
Phys. Rep.
898
,
1
114
(
2021
).
32.
Y.
Kuramoto
and
D.
Battogtokh
, “
Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,”
Nonlinear Phenom. Complex Syst.
5
,
380
385
(
2002
).
33.
D. M.
Abrams
and
S. H.
Strogatz
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
,
174102
(
2004
).
34.
O. E.
Omel’chenko
, “
The mathematics behind chimera states
,”
Nonlinearity
31
,
R121
(
2018
).
35.
S. W.
Haugland
, “
The changing notion of chimera states, a critical review
,”
J. Phys.: Complex.
2
,
032001
(
2021
).
36.
S.
Watanabe
and
S.
Strogatz
, “
Integrability of a globally coupled oscillator array
,”
Phys. Rev. Lett.
70
,
2391
2394
(
1993
).
37.
J. R.
Engelbrecht
and
R.
Mirollo
, “
Classification of attractors for systems of identical coupled Kuramoto oscillators
,”
Chaos
24
,
013114
(
2014
).
38.
P.
Clusella
,
A.
Politi
, and
M.
Rosenblum
, “
A minimal model of self-consistent partial synchrony
,”
New J. Phys.
18
,
093037
(
2016
).
39.
D.
Hansel
,
G.
Mato
, and
C.
Meunier
, “
Clustering and slow switching in globally coupled phase oscillators
,”
Phys. Rev. E
48
,
3470
3477
(
1993
).
40.
H.
Kori
and
Y.
Kuramoto
, “
Slow switching in globally coupled oscillators: Robustness and occurrence through delayed coupling
,”
Phys. Rev. E
63
,
046214
(
2001
).
41.
P.
Ashwin
,
G.
Orosz
,
J.
Wordsworth
, and
S.
Townley
, “
Dynamics on networks of cluster states for globally coupled phase oscillators
,”
SIAM J. Appl. Dyn. Syst.
6
,
728
758
(
2007
).
42.
P.
Ashwin
,
C.
Bick
, and
O.
Burylko
, “
Identical phase oscillator networks: Bifurcations symmetry and reversibility for generalized coupling
,”
Front. Appl. Math. Stat.
2
,
7
(
2016
).
43.
O.
Burylko
, “
Collective dynamics and bifurcations in symmetric networks of phase oscillators. I
,”
J. Math. Sci.
249
,
573
600
(
2020
).
44.
E. A.
Grines
,
A.
Kazakov
, and
I. R.
Sataev
, “
On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillators
,”
Chaos
32
,
093105
(
2022
).
45.
A. S.
Gonchenko
,
S. V.
Gonchenko
, and
L. P.
Shilnikov
, “
Towards scenarios of chaos appearance in three-dimensional maps
,”
Rus. Nonlin. Dyn.
8
,
3
28
(
2012
).
46.
A.
Gonchenko
,
S.
Gonchenko
,
A.
Kazakov
, and
D.
Turaev
, “
Simple scenarios of onset of chaos in three-dimensional maps
,”
Int. J. Bifurc. Chaos
24
,
1440005
(
2014
).
47.
A. S.
Gonchenko
and
S. V.
Gonchenko
, “
Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps
,”
Phys. D
337
,
43
57
(
2016
).
48.
C.
Bick
,
M.
Timme
,
D.
Paulikat
,
D.
Rathlev
, and
P.
Ashwin
, “
Chaos in symmetric phase oscillator networks
,”
Phys. Rev. Lett.
107
,
244101
(
2011
).
49.
P.
Clusella
and
A.
Politi
, “
Irregular collective dynamics in a Kuramoto–Daido system
,”
J. Phys.: Complex.
2
,
014002
(
2020
).
50.
P.
Ashwin
,
C.
Bick
, and
A.
Rodrigues
, “From symmetric networks to heteroclinic dynamics and chaos in coupled phase oscillators with higher-order interactions,” in Understanding Complex Systems, edited by F. Battiston and G. Petri (Springer International Publishing, 2022), pp. 197–216.
51.
H.
Kori
, “
Slow switching in a population of delayed pulse-coupled oscillators
,”
Phys. Rev. E
68
,
021919
(
2003
).
52.
P.
Ashwin
and
J. W.
Swift
, “
The dynamics of n weakly coupled identical oscillators
,”
J. Nonlinear Sci.
2
,
69
108
(
1992
).
53.
C.
Tresser
, “
About some theorems by L. P. Šil’nikov
,”
Ann. I.H.P. Phys. Theor.
40
,
441
461
(
1984
); available at https://zbmath.org/?q=0556.58025.
54.
A.
Dhooge
,
W.
Govaerts
,
Y. A.
Kuznetsov
,
H. G.
Meijer
, and
B.
Sautois
, “
New features of the software MatCont for bifurcation analysis of dynamical systems
,”
Math. Comput. Model. Dyn. Syst.
14
,
147
175
(
2008
).
55.
G.
Datseris
, “
DynamicalSystemsjl: A Julia software library for chaos and nonlinear dynamics
,”
J. Open Source Softw.
3
,
598
(
2018
).
56.
Y. V.
Bakhanova
,
S.
Gonchenko
,
A.
Gonchenko
,
A.
Kazakov
, and
E.
Samylina
, “
On Shilnikov attractors of three-dimensional flows and maps
,”
J. Differ. Equ. Appl.
(published online 2022).
57.
P.
Chossat
and
M.
Golubitsky
, “
Symmetry-increasing bifurcation of chaotic attractors
,”
Phys. D
32
,
423
436
(
1988
).
58.
S.
Endres
,
C.
Sandrock
, and
W.
Focke
, “
A simplicial homology algorithm for Lipschitz optimisation
,”
J. Glob. Optim.
72
,
181
217
(
2018
).
59.
I. S.
Kotsireas
,
P. M.
Pardalos
,
A.
Semenov
,
W. T.
Trevena
, and
M. N.
Vrahatis
, “Survey of methods for solving systems of nonlinear equations, part II: Optimization based approaches,” arXiv:2208.08532 (2022).
60.
J.
Guckenheimer
and
A.
Vladimirsky
, “
A fast method for approximating invariant manifolds
,”
SIAM J. Appl. Dyn. Syst.
3
,
232
260
(
2004
).
You do not currently have access to this content.