The occurrence mechanisms of extreme events under random disturbances are relatively complex and not yet clear. In this paper, we take a class of generalized Duffing-type systems as an example to reveal three mechanisms for the occurrence of extreme events. First, it is intuitive that a very large excitation can generate extreme events, such as the Lévy noise. In such a case, extreme excitation works, while it does not require much about the systems. Second, when a system has a bifurcation structure, if the difference of the branches at the bifurcation point is large, a randomly varying bifurcation parameter can lead to extreme events. Finally, when a system has rare attractors, a random impulse excitation, such as Poisson white noise, is able to cause the system to escape from one general attractor into rare attractors. Such a kind of special regime switching behavior can lead to extreme events. These results reveal the possible mechanisms of extreme events in a class of nonlinear Duffing-type systems and provide guidance for further prediction and avoidance of extreme events.

1.
A.
Volvach
,
L.
Kogan
,
K.
Kanonidi
,
L.
Nadezhka
,
I.
Bubukin
,
V.
Shtenberg
,
A.
Gordetsov
,
O.
Krasnikova
, and
D.
Kislitsyn
, “
Changes in the properties of the statistics of physical and biophysical fields as earthquake precursor
,”
Commun. Nonlinear Sci. Numer. Simul.
108
,
106200
(
2022
).
2.
S.
Gupta
,
N.
Boers
,
F.
Pappenberger
, and
J.
Kurths
, “
Complex network approach for detecting tropical cyclones
,”
Clim. Dyn.
57
,
3355
3364
(
2021
).
3.
J.
Zamora-Munt
,
B.
Garbin
,
S.
Barland
,
M.
Giudici
,
J. R. R.
Leite
,
C.
Masoller
, and
J. R.
Tredicce
, “
Rogue waves in optically injected lasers: Origin, predictability, and suppression
,”
Phys. Rev. A
87
(
3
),
035802
(
2013
).
4.
N.
Frolov
and
A.
Hramov
, “
Extreme synchronization events in a Kuramoto model: The interplay between resource constraints and explosive transitions
,”
Chaos
31
(
6
),
063103
(
2021
).
5.
M.
Ghil
,
P.
Yiou
,
S.
Hallegatte
,
B.
Malamud
,
P.
Naveau
,
A.
Soloviev
,
P.
Friederichs
,
V.
Keilis-Borok
,
D.
Kondrashov
,
V.
Kossobokov
, and
O.
Mestre
, “
Extreme events: Dynamics, statistics and prediction
,”
Nonlinear Process. Geophys.
18
(
3
),
295
350
(
2011
).
6.
G.
Ansmann
,
R.
Karnatak
,
K.
Lehnertz
, and
U.
Feudel
, “
Extreme events in excitable systems and mechanisms of their generation
,”
Phys. Rev. E
88
(
5
),
052911
(
2013
).
7.
A.
Mishra
,
S.
Leo Kingston
,
C.
Hens
,
T.
Kapitaniak
,
U.
Feudel
, and
S. K.
Dana
, “
Routes to extreme events in dynamical systems: Dynamical and statistical characteristics
,”
Chaos
30
(
6
),
063114
(
2020
).
8.
A.
Ray
,
S.
Rakshit
,
D.
Ghosh
, and
S. K.
Dana
, “
Intermittent large deviation of chaotic trajectory in Ikeda map: Signature of extreme events
,”
Chaos
29
(
4
),
043131
(
2019
).
9.
J.
Spiechowicz
and
J.
Łuczka
, “
Arcsine law and multistable Brownian dynamics in a tilted periodic potential
,”
Phys. Rev. E
104
(
2
),
024132
(
2021
).
10.
M.
Farazmand
and
T. P.
Sapsis
, “
Extreme events: Mechanisms and prediction
,”
Appl. Mech. Rev.
71
(
5
),
050801
(
2019
).
11.
M. A.
Mohamad
and
T. P.
Sapsis
, “
Probabilistic description of extreme events in intermittently unstable dynamical systems excited by correlated stochastic processes
,”
SIAM J. Uncertain. Quantif.
3
(
1
),
709
736
(
2015
).
12.
S.
Kumarasamy
and
A. N.
Pisarchik
, “
Extreme events in systems with discontinuous boundaries
,”
Phys. Rev. E
98
(
3
),
032203
(
2018
).
13.
B.
Thangavel
,
S.
Srinivasan
, and
T.
Kathamuthu
, “
Extreme events in a forced BVP oscillator: Experimental and numerical studies
,”
Chaos Soliton. Fract.
153
,
111569
(
2021
).
14.
H. L. D. S.
Cavalcante
,
M.
Oriá
,
D.
Sornette
,
E.
Ott
, and
D. J.
Gauthier
, “
Predictability and suppression of extreme events in a chaotic system
,”
Phys. Rev. Lett.
111
(
19
),
198701
(
2013
).
15.
P.
Ashwin
,
J.
Buescu
, and
I.
Stewart
, “
Bubbling of attractors and synchronisation of chaotic oscillators
,”
Phys. Lett. A
193
(
2
),
126
139
(
1994
).
16.
D.
Zhao
,
Y.
Li
,
Y.
Xu
,
Q.
Liu
, and
J.
Kurths
, “
Extreme events in a class of nonlinear Duffing-type oscillators with a parametric periodic force
,”
Eur. Phys. J. Plus
137
(
3
),
314
(
2022
).
17.
Q.
Liu
,
Y.
Xu
,
J.
Kurths
, and
X.
Liu
, “
Complex nonlinear dynamics and vibration suppression of conceptual airfoil models: A state-of-the-art overview
,”
Chaos
32
(
6
),
062101
(
2022
).
18.
B.
Lindner
,
J.
Garcıa-Ojalvo
,
A.
Neiman
, and
L.
Schimansky-Geier
, “
Effects of noise in excitable systems
,”
Phys. Rep.
392
(
6
),
321
424
(
2004
).
19.
A. N.
Pisarchik
and
U.
Feudel
, “
Control of multistability
,”
Phys. Rep.
540
(
4
),
167
218
(
2014
).
20.
L.
Gammaitoni
,
P.
Hänggi
,
P.
Jung
, and
F.
Marchesoni
, “
Stochastic resonance
,”
Rev. Mod. Phys.
70
(
1
),
223
(
1998
).
21.
H.
Li
,
Y.
Xu
,
R.
Metzler
, and
J.
Kurths
, “
Transition path properties for one-dimensional systems driven by Poisson white noise
,”
Chaos Soliton. Fract.
141
,
110293
(
2020
).
22.
Q.
Liu
,
Y.
Xu
, and
J.
Kurths
, “
Bistability and stochastic jumps in an airfoil system with viscoelastic material property and random fluctuations
,”
Commun. Nonlinear Sci. Numer. Simul.
84
,
105184
(
2020
).
23.
C. L.
Franzke
, “
Extremes in dynamic-stochastic systems
,”
Chaos
27
(
1
),
012101
(
2017
).
24.
M. A.
Mohamad
and
T. P.
Sapsis
, “
Probabilistic response and rare events in Mathieu’s equation under correlated parametric excitation
,”
Ocean Eng.
120
,
289
297
(
2016
).
25.
S.
Guth
and
T. P.
Sapsis
, “
Machine learning predictors of extreme events occurring in complex dynamical systems
,”
Entropy
21
(
10
),
925
(
2019
).
26.
H.
Kyul Joo
,
M. A.
Mohamad
, and
T. P.
Sapsis
, “
Heavy-tailed response of structural systems subjected to stochastic excitation containing extreme forcing events
,”
J. Comput. Nonlinear Dyn.
13
(
9
),
090914
(
2018
).
27.
C.
Franzke
, “
Predictability of extreme events in a nonlinear stochastic-dynamical model
,”
Phys. Rev. E
85
(
3
),
031134
(
2012
).
28.
Q.
Liu
,
Y.
Xu
, and
Y.
Li
, “
Complex dynamics of a conceptual airfoil structure with consideration of extreme flight conditions
,”
Nonlinear Dyn.
(published online) (
2023
).
29.
S.
Sudharsan
,
A.
Venkatesan
,
P.
Muruganandam
, and
M.
Senthilvelan
, “
Emergence and mitigation of extreme events in a parametrically driven system with velocity-dependent potential
,”
Eur. Phys. J. Plus
136
(
1
),
129
(
2021
).
30.
J.
Zamora-Munt
,
C. R.
Mirasso
, and
R.
Toral
, “
Suppression of deterministic and stochastic extreme desynchronization events using anticipated synchronization
,”
Phys. Rev. E
89
(
1
),
012921
(
2014
).
31.
C.
Bonatto
and
A.
Endler
, “
Extreme and superextreme events in a loss-modulated CO 2 laser: Nonlinear resonance route and precursors
,”
Phys. Rev. E
96
(
1
),
012216
(
2017
).
32.
A.
Jamnongpipatkul
,
Z.
Su
, and
J. M.
Falzarano
, “
Nonlinear ship rolling motion subjected to noise excitation
,”
Ocean Syst. Eng.
1
(
3
),
249
261
(
2011
).
33.
J.
Chen
,
J.
Yang
,
K.
Shen
,
Z.
Zheng
, and
Z.
Chang
, “
Stochastic dynamic analysis of rolling ship in random wave condition by using finite element method
,”
Ocean Eng.
250
,
110973
(
2022
).
34.
X.
Zhang
,
Y.
Xu
,
Q.
Liu
,
J.
Kurths
, and
C.
Grebogi
, “
Rate-dependent tipping and early warning in a thermoacoustic system under extreme operating environment
,”
Chaos
31
(
11
),
113115
(
2021
).
35.
F.
Yang
,
Y.
Zheng
,
J.
Duan
,
L.
Fu
, and
S.
Wiggins
, “
The tipping times in an Arctic sea ice system under influence of extreme events
,”
Chaos
30
(
6
),
063125
(
2020
).
36.
Z.
Wang
,
Y.
Xu
, and
H.
Yang
, “
Lévy noise induced stochastic resonance in an FHN model
,”
Sci. China Technol. Sci.
59
(
3
),
371
375
(
2016
).
37.
X.
Yue
,
B.
Yu
,
Y.
Li
, and
Y.
Xu
, “
Dynamic response and bifurcation for Rayleigh-Liénard oscillator under multiplicative colored noise
,”
Chaos Soliton. Fract.
155
,
111744
(
2022
).
38.
X.
Yue
,
G.
Lv
, and
Y.
Zhang
, “
Rare and hidden attractors in a periodically forced Duffing system with absolute nonlinearity
,”
Chaos Soliton. Fract.
150
,
111108
(
2021
).
39.
A.
Chudzik
,
P.
Perlikowski
,
A.
Stefanski
, and
T.
Kapitaniak
, “
Multistability and rare attractors in van der Pol–Duffing oscillator
,”
Int. J. Bifurcation Chaos
21
(
07
),
1907
1912
(
2011
).
40.
D.
Dudkowski
,
S.
Jafari
,
T.
Kapitaniak
,
N. V.
Kuznetsov
,
G. A.
Leonov
, and
A.
Prasad
, “
Hidden attractors in dynamical systems
,”
Phys. Rep.
637
,
1
50
(
2016
).
41.
G.
Rega
and
S.
Lenci
, “
A global dynamics perspective for system safety from macro-to nanomechanics: Analysis, control, and design engineering
,”
Appl. Mech. Rev.
67
(
5
),
050802
(
2015
).
42.
S.
Lenci
and
G.
Rega
,
Global Nonlinear Dynamics for Engineering Design and System Safety
(
Springer
,
2019
), Vol. 588.
43.
J.
Spiechowicz
,
P.
Hänggi
, and
J.
Łuczka
, “
Brownian motors in the microscale domain: Enhancement of efficiency by noise
,”
Phys. Rev. E
90
(
3
),
032104
(
2014
).
44.
Z.
Lin
,
Y.
Liang
,
J.
Zhao
, and
J.
Li
, “
Predicting solutions of the Lotka-Volterra equation using hybrid deep network
,”
Theor. Appl. Mech. Lett.
12
(
6
),
100384
(
2022
).
You do not currently have access to this content.