Link prediction has been widely studied as an important research direction. Higher-order link prediction has gained, in particular, significant attention since higher-order networks provide a more accurate description of real-world complex systems. However, higher-order networks contain more complex information than traditional pairwise networks, making the prediction of higher-order links a formidable challenging task. Recently, researchers have discovered that local features have advantages over long-range features in higher-order link prediction. Therefore, it is necessary to develop more efficient and concise higher-order link prediction algorithms based on local features. In this paper, we proposed two similarity metrics via local information, simplicial decomposition weight and closed ratio weight, to predict possible future higher-order interactions (simplices) in simplicial networks. These two algorithms capture local higher-order information at two aspects: simplex decomposition and cliques’ state (closed or open). We tested their performance in eight empirical simplicial networks, and the results show that our proposed metrics outperform other benchmarks in predicting third-order and fourth-order interactions (simplices) in most cases. In addition, we explore the robustness of the proposed algorithms, and the results suggest that the performance of these novel algorithms is advanced under different sizes of training sets.

1.
S. H.
Strogatz
, “
Exploring complex networks
,”
Nature
410
,
268
276
(
2001
).
2.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
3.
S.
Wasserman
and
K.
Faust
, Social Network Analysis: Methods and Applications (Structural Analysis in the Social Sciences), Cambridge University Press, 1994.
4.
M. E.
Newman
, “
The structure of scientific collaboration networks
,”
Proc. Natl. Acad. Sci. U.S.A.
98
,
404
409
(
2001
).
5.
M.
Girvan
and
M. E.
Newman
, “
Community structure in social and biological networks
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
7821
7826
(
2002
).
6.
D.
Liben-Nowell
and
J.
Kleinberg
, “The link prediction problem for social networks,” in
Proceedings of the Twelfth International Conference on Information and Knowledge Management
(Association for Computing Machinery, 2003), pp. 556–559.
7.
L.
and
T.
Zhou
, “
Link prediction in complex networks: A survey
,”
Phys. A: Stat.
390
,
1150
1170
(
2011
).
8.
T.
Zhou
, “
Progresses and challenges in link prediction
,”
iScience
24
,
103217
(
2021
).
9.
R.
Yijun
,
X.
Xiao-Ke
, and
J.
Tao
, “The maximum capability of a topological feature in link prediction,” arXiv:2206.15101 (2022).
10.
Z.
Huang
,
X.
Li
, and
H.
Chen
, “Link prediction approach to collaborative filtering,” in Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries (Association for Computing Machinery, 2005), pp. 141–142.
11.
J.
Li
,
L.
Zhang
,
F.
Meng
, and
F.
Li
, “
Recommendation algorithm based on link prediction and domain knowledge in retail transactions
,”
Procedia Comput. Sci.
31
,
875
881
(
2014
).
12.
R.
Guimerà
and
M.
Sales-Pardo
, “
Missing and spurious interactions and the reconstruction of complex networks
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
22073
22078
(
2009
).
13.
T.
Turki
and
Z.
Wei
, “
A link prediction approach to cancer drug sensitivity prediction
,”
BMC Syst. Biol.
11
,
94
(
2017
).
14.
N.
Pearcy
,
J. J.
Crofts
, and
N.
Chuzhanova
, “
Hypergraph models of metabolism
,”
Int. J. Biol. Vet. Agric. Food Eng.
8
,
752
756
(
2014
).
15.
M. M.
Mayfield
and
D. B.
Stouffer
, “
Higher-order interactions capture unexplained complexity in diverse communities
,”
Nat. Ecol. Evol.
1
,
0062
(
2017
).
16.
D.
Centola
,
J.
Becker
,
D.
Brackbill
, and
A.
Baronchelli
, “
Experimental evidence for tipping points in social convention
,”
Science
360
,
1116
1119
(
2018
).
17.
S.
Milojević
, “
Principles of scientific research team formation and evolution
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
3984
3989
(
2014
).
18.
F.
Battiston
,
G.
Cencetti
,
I.
Iacopini
,
V.
Latora
,
M.
Lucas
,
A.
Patania
,
J.-G.
Young
, and
G.
Petri
, “
Networks beyond pairwise interactions: Structure and dynamics
,”
Phys. Rep.
874
,
1
92
(
2020
).
19.
F.
Battiston
,
E.
Amico
,
A.
Barrat
,
G.
Bianconi
,
G.
Ferraz de Arruda
,
B.
Franceschiello
,
I.
Iacopini
,
S.
Kéfi
,
V.
Latora
,
Y.
Moreno
, and
M. M.
Murray
, “
The physics of higher-order interactions in complex systems
,”
Nat. Phys.
17
,
1093
1098
(
2021
).
20.
G.
Bianconi
,
Higher-Order Networks
(
Cambridge University Press
,
2021
).
21.
D.
Zhao
,
R.
Li
,
H.
Peng
,
M.
Zhong
, and
W.
Wang
, “
Higher-order percolation in simplicial complexes
,”
Chaos, Solitons Fractals
155
,
111701
(
2022
).
22.
W.
Wang
,
W.
Li
,
T.
Lin
,
T.
Wu
,
L.
Pan
, and
Y.
Liu
, “
Generalized k-core percolation on higher-order dependent networks
,”
Appl. Math. Comput.
420
,
126793
(
2022
).
23.
A. P.
Millán
,
J. J.
Torres
, and
G.
Bianconi
, “
Explosive higher-order Kuramoto dynamics on simplicial complexes
,”
Phys. Rev. Lett.
124
,
218301
(
2020
).
24.
M.
Lucas
,
G.
Cencetti
, and
F.
Battiston
, “
Multiorder Laplacian for synchronization in higher-order networks
,”
Phys. Rev. Res.
2
,
033410
(
2020
).
25.
I.
Iacopini
,
G.
Petri
,
A.
Barrat
, and
V.
Latora
, “
Simplicial models of social contagion
,”
Nat. Commun.
10
,
2485
(
2019
).
26.
S.
Chowdhary
,
A.
Kumar
,
G.
Cencetti
,
I.
Iacopini
, and
F.
Battiston
, “
Simplicial contagion in temporal higher-order networks
,”
J. Phys.: Complex.
2
,
035019
(
2021
).
27.
A. R.
Benson
,
R.
Abebe
,
M. T.
Schaub
,
A.
Jadbabaie
, and
J.
Kleinberg
, “
Simplicial closure and higher-order link prediction
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
E11221
E11230
(
2018
).
28.
N.
Chavan
and
K.
Potika
, “Higher-order link prediction using triangle embeddings,” in 2020 IEEE International Conference on Big Data (Big Data) (IEEE, 2020), pp. 4535–4544.
29.
R.
Mastrandrea
,
J.
Fournet
, and
A.
Barrat
, “
Contact patterns in a high school: A comparison between data collected using wearable sensors, contact diaries and friendship surveys
,”
PLoS One
10
,
e0136497
(
2015
).
30.
J.
Stehlé
,
N.
Voirin
,
A.
Barrat
,
C.
Cattuto
,
L.
Isella
,
J.-F.
Pinton
,
M.
Quaggiotto
,
W.
Van den Broeck
,
C.
Régis
,
B.
Lina
, and
P.
Vanhems
, “
High-resolution measurements of face-to-face contact patterns in a primary school
,”
PLoS One
6
,
e23176
(
2011
).
31.
Y.
Zhang
,
F. N.
Abu-Khzam
,
N. E.
Baldwin
,
E. J.
Chesler
,
M. A.
Langston
, and
N. F.
Samatova
, “Genome-scale computational approaches to memory-intensive applications in systems biology,” in 2005 ACM/IEEE Conference on Supercomputing (IEEE, 2005), p. 12.
You do not currently have access to this content.