Synchronization is one of the key issues in three-phase AC power systems. Its characteristics have been dramatically changed with the large-scale integration of power-electronic-based renewable energy, mainly including a permanent magnetic synchronous generator (PMSG) and a double-fed induction generator (DFIG) for wind energy and a photovoltaic (PV) generator for solar energy. In this paper, we review recent progresses on the synchronization stability and multi-timescale properties of the renewable-dominated power system (RDPS), from nodes and network perspectives. All PMSG, DFIG, and PV are studied. In the traditional synchronous generator (SG) dominated power system, its dynamics can be described by the differential–algebraic equations (DAEs), where the dynamic apparatuses are modeled by differential equations and the stationary networks are described by algebraic equations. Unlike the single electromechanical timescale and DAE description for the SG-dominated power system, the RDPS dynamics should be described by the multiscale dynamics of both nodes and networks. For three different timescales, including the AC current control, DC voltage control, and rotor electromechanical timescales, their corresponding models are well established. In addition, for the multiscale network dynamics, the dynamical network within the AC current control timescale, which should be described by differential equations, can also be simplified as algebraic equations. Thus, the RDPS dynamics can be put into a similar DAE diagram for each timescale to the traditional power system dynamics, with which most of power electrical engineers are familiar. It is also found that the phase-locked loop for synchronization plays a crucial role in the whole system dynamics. The differences in the synchronization and multiscale characteristics between the traditional power system and the RDPS are well uncovered and summarized. Therefore, the merit of this paper is to establish a basic physical picture for the stability mechanism in the RDPS, which still lacks systematic studies and is controversial in the field of electrical power engineering.

1.
S. H.
Strogatz
,
Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life
(
Hachette
,
2012
).
2.
A. S.
Pikovsky
,
M. G.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Science
(
Cambridge University Press
,
2001
).
3.
P.
Ji
,
T. K. D.
Peron
,
P. J.
Menck
,
F. A.
Rodrigues
, and
J.
Kurths
, “
Cluster explosive synchronization in complex networks
,”
Phys. Rev. Lett.
110
,
218701
(
2013
).
4.
S.
Su
,
J.
Xiao
,
W.
Liu
, and
Y.
Wu
, “
Synchronization mechanism of clapping rhythms in mutual interacting individuals
,”
Chin. Phys. B
30
,
010505
(
2021
).
5.
A.
Gajduk
,
M.
Todorovski
, and
L.
Kocarev
, “
Stability of power grids: An overview
,”
Eur. Phys. J. Spec. Top.
223
,
2387
2409
(
2014
).
6.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(
Westview Press
,
2015
).
7.
P.
Kundur
,
Power System Stability and Control
(
McGraw-Hill
,
1994
).
8.
P. M.
Anderson
and
A. A.
Fouad
,
Power System Control and Stability
(
The Iowa State University Press
,
1994
).
9.
J.
Machowski
,
Z.
Lubosny
,
J. W.
Bialek
, and
J. R.
Bumby
,
Power System Dynamics: Stability and Control
(
John Wiley & Sons
,
2020
).
10.
C.
Concordia
,
Synchronous Machines. Theory and Performance
(
John Wiley & Sons
,
New York
,
1951
).
11.
D.
Skubov
,
A.
Lukin
, and
I.
Popov
, “
Bifurcation curves for synchronous electrical machine
,”
Nonlinear Dyn.
83
,
2323
2329
(
2016
).
12.
M.
Sarkar
and
S.
Gupta
, “
Synchronization in the Kuramoto model in presence of stochastic resetting
,”
Chaos
32
,
073109
(
2022
).
13.
F.
Rodrigues
,
T.
Peron
,
P.
Ji
, and
J.
Kurths
, “
The Kuramoto model in complex networks
,”
Phys. Rep.
610
,
1
98
(
2016
).
14.
J.
Grzybowski
,
E.
Macau
, and
T.
Yoneyama
, “
On synchronization in power-grids modelled as networks of second-order Kuramoto oscillators
,”
Chaos
26
,
113113
(
2016
).
15.
D.
Subbarao
and
K.
Singh
, “
Hysteresis and bifurcations in the classical model of generator
,”
IEEE Trans. Power Syst.
19
,
1918
1924
(
2004
).
16.
G.
Filatrella
,
A. H.
Nielsen
, and
N. F.
Pedersen
, “
Analysis of a power grid using a Kuramoto-like model
,”
Eur. Phys. J. B
61
,
485
491
(
2008
).
17.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J. P.
Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
,
137
(
2005
).
18.
D.
Witthaut
,
F.
Hellmann
,
J.
Kurths
,
S.
Kettemann
,
H.
Meyer-Ortmanns
, and
M.
Timme
, “
Collective nonlinear dynamics and self-organization in decentralized power grids
,”
Rev. Mod. Phys.
94
,
015005
(
2022
).
19.
S.
Liu
and
C.
Chen
,
Energy Function Analysis for Power System Transient Stability—Network Structure Preserving Model
(
Science Press
,
2014
) (in Chinese).
20.
Y.
Xue
,
T.
Van Cutsem
, and
M.
Ribbens-Pavella
, “
A simple direct method for fast transient stability assessment of large power systems
,”
IEEE Trans. Power Syst.
3
,
400
412
(
1988
).
21.
H.-D.
Chiang
,
C.-C.
Chu
, and
G.
Cauley
, “
Direct stability analysis of electric power systems using energy functions: Theory, applications, and perspective
,”
Proc. IEEE
83
,
1497
1529
(
1995
).
22.
H.-D.
Chiang
,
F.
Wu
, and
P.
Varaiya
, “
Foundations of direct methods for power system transient stability analysis
,”
IEEE Trans. Circuits Syst.
34
,
160
173
(
1987
).
23.
F.
Blaabjerg
,
Y.
Yang
,
K. A.
Kim
, and
J.
Rodriguez
, “
Power electronics technology for large-scale renewable energy generation
,”
Proc. IEEE
111
,
335–355
(
2023
).
24.
Z.
Tang
,
Y.
Yang
, and
F.
Blaabjerg
, “
Power electronics: The enabling technology for renewable energy integration
,”
CSEE J. Power Energy Syst.
8
,
39
52
(
2022
).
25.
X.
Yuan
,
J.
Hu
, and
S.
Cheng
, “
Multi-time scale dynamics in power electronics-dominated power systems
,”
Front. Mech. Eng.
12
,
303
311
(
2017
).
26.
R.
Ma
,
Z.
Yang
,
S.
Cheng
, and
M.
Zhan
, “
Sustained oscillations and bifurcations in three-phase voltage source converters tied to AC gird
,”
IET Renew. Power Gen.
14
,
3770
3781
(
2020
).
27.
H.
Yuan
,
X.
Yuan
, and
J.
Hu
, “
Modeling of grid-connected VSCs for power system small-signal stability analysis in DC-link voltage control timescale
,”
IEEE Trans. Power Syst.
32
,
3981
3991
(
2017
).
28.
W.
Tang
,
J.
Hu
,
Y.
Chang
, and
F.
Liu
, “
Modeling of DFIG-based wind turbine for power system transient response analysis in rotor speed control timescale
,”
IEEE Trans. Power Syst.
33
,
6795
6805
(
2018
).
29.
Y.
Chang
,
J.
Hu
,
W.
Tang
, and
G.
Song
, “
Fault current analysis of type-3 WTs considering sequential switching of internal control and protection circuits in multi time scales during LVRT
,”
IEEE Trans. Power Syst.
33
,
6894
6903
(
2018
).
30.
Y.
Ma
,
D.
Zhu
,
Z.
Zhang
,
X.
Zou
,
J.
Hu
, and
Y.
Kang
, “
Modeling and transient stability analysis for type-3 wind turbines using singular perturbation and Lyapunov methods
,”
IEEE Trans. Ind. Electron.
70
,
8075
8086
(
2022
).
31.
K. T.
Chi
,
M.
Huang
,
X.
Zhang
,
D.
Liu
, and
X. L.
Li
, “
Circuits and systems issues in power electronics penetrated power grid
,”
IEEE Open J. Circ. Syst.
1
,
140
156
(
2020
).
32.
Q.
Jiang
and
C.
Zhao
, “
Electromagnetic transient synchronization stability issue of grid-connected inverters
,”
J. Tsinghua Univ.
21
,
1
14
(
2021
) (in Chinese).
33.
Y.
Zhang
,
X.
Cai
,
C.
Zhang
,
J.
Lyu
, and
Y.
Li
, “
Transient synchronization stability analysis of voltage source converters: A review
,”
Proc. CSEE
41
,
1687
1701
(
2021
) (in Chinese).
34.
H.
Geng
,
C.
He
,
Y.
Liu
,
X.
He
, and
M.
Li
, “
Overview on transient synchronization stability of renewable-rich power systems
,”
High Voltage Eng.
48
,
3367
3383
(
2022
) (in Chinese).
35.
R.
Ma
,
Y.
Zhang
,
Z.
Yang
,
J.
Kurths
,
M.
Zhan
, and
C.
Lin
, “
Synchronization stability of power-grid-tied converters
,”
Chaos
33
,
032102
(
2023
).
36.
X.
Wang
,
M. G.
Taul
,
H.
Wu
,
Y.
Liao
,
F.
Blaabjerg
, and
L.
Harnefors
, “
Grid-synchronization stability of converter-based resources—an overview
,”
IEEE Open J. Ind. Appl.
1
,
115
134
(
2020
).
37.
Y.
Zhang
,
M.
Han
, and
M.
Zhan
, “
The concept and understanding of synchronous stability in power-electronic-based power systems
,”
Energies
16
,
2923
(
2023
).
38.
Y.
Gu
and
T. C.
Green
, “
Power system stability with a high penetration of inverter-based resources
,”
Proc. IEEE
111
,
832
853
(
2022
).
39.
Y.
Li
,
Y.
Gu
, and
T. C.
Green
, “
Revisiting grid-forming and grid-following inverters: A duality theory
,”
IEEE Trans. Power Syst.
37
,
4541
4554
(
2022
).
40.
D.
Dong
,
B.
Wen
,
D.
Boroyevich
,
P.
Mattavelli
, and
Y.
Xue
, “
Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions
,”
IEEE Trans. Ind. Electron.
62
,
310
321
(
2014
).
41.
X.
Fu
,
M.
Huang
,
C. K.
Tse
,
J.
Yang
,
Y.
Ling
, and
X.
Zha
, “
Synchronization stability of grid-following VSC considering interactions of inner current loop and parallel-connected converters
,”
IEEE Trans. Smart Grid
(published online
2023
).
42.
N.
Hatziargyriou
,
J.
Milanović
,
C.
Rahmann
,
V.
Ajjarapu
,
C.
Cañizares
,
I.
Erlich
,
D.
Hill
,
I.
Hiskens
,
I.
Kamwa
,
B.
Pal
et al., “Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies,” IEEE PES Technical Report PES-TR77 (2020).
43.
M.
Huang
,
Y.
Peng
,
C.
Tse
,
Y.
Liu
,
J.
Sun
, and
X.
Zha
, “
Bifurcation and large-signal stability analysis of three-phase voltage source converter under grid voltage dips
,”
IEEE Trans. Power Electron.
32
,
8868
8879
(
2017
).
44.
Z.
Yang
,
R.
Ma
,
S.
Cheng
, and
M.
Zhan
, “
Nonlinear modeling and analysis of grid-connected voltage-source converters under voltage dips
,”
IEEE J. Emerg. Select. Top. Power Electron.
8
,
3281
3292
(
2020
).
45.
M.
He
,
W.
He
,
J.
Hu
,
X.
Yuan
, and
M.
Zhan
, “
Nonlinear analysis of a simple amplitude–phase motion equation for power-electronics-based power system
,”
Nonlinear Dyn.
95
,
1965
1976
(
2019
).
46.
Q.
Hu
,
L.
Fu
,
F.
Ma
, and
F.
Ji
, “
Large signal synchronizing instability of PLL-based VSC connected to weak AC grid
,”
IEEE Trans. Power Syst.
34
,
3220
3229
(
2019
).
47.
R.
Ma
,
J.
Li
,
J.
Kurths
,
S.
Cheng
, and
M.
Zhan
, “
Generalized swing equation and transient synchronous stability with PLL-based VSC
,”
IEEE Trans. Energy Convers.
37
,
1428
1441
(
2022
).
48.
X.
Fu
,
J.
Sun
,
M.
Huang
,
Z.
Tian
,
H.
Yan
,
H. H.-C.
Iu
,
P.
Hu
, and
X.
Zha
, “
Large-signal stability of grid-forming and grid-following controls in voltage source converter: A comparative study
,”
IEEE Trans. Power Electron.
36
,
7832
7840
(
2021
).
49.
C.
Zhang
,
X.
Cai
,
A.
Rygg
, and
M.
Molinas
, “
Modeling and analysis of grid-synchronizing stability of a type-IV wind turbine under grid faults
,”
Int. J. Electr. Power Energy Syst.
117
,
105544
(
2020
).
50.
Y.
Zhang
,
C.
Zhang
, and
X.
Cai
, “
Large-signal grid-synchronization stability analysis of PLL-based VSCs using Lyapunov’s direct method
,”
IEEE Trans. Power Syst.
37
,
788
791
(
2022
).
51.
Z.
Zhang
,
R.
Schuerhuber
,
L.
Fickert
,
K.
Friedl
,
G.
Chen
, and
Y.
Zhang
, “
Domain of attraction’s estimation for grid connected converters with phase-locked loop
,”
IEEE Trans. Power Syst.
37
,
1351
1362
(
2022
).
52.
H.
Wu
and
X.
Wang
, “
Design-oriented transient stability analysis of PLL-synchronized voltage-source converters
,”
IEEE Trans. Power Electron.
35
,
3573
3589
(
2020
).
53.
M.
Zarif Mansour
,
S.
Me
,
S.
Hadavi
,
B.
Badrzadeh
,
A.
Karimi
, and
B.
Bahrani
, “
Nonlinear transient stability analysis of phased-locked loop based grid-following voltage source converters using Lyapunov’s direct method
,”
IEEE J. Emerg. Select. Top. Power Electron.
10
,
2699
2709
(
2022
).
54.
J.
Zhao
,
M.
Huang
, and
X.
Zha
, “
Nonlinear analysis of PLL damping characteristics in weak-grid-tied inverters
,”
IEEE Trans. Circ. Syst. II: Express Briefs
67
,
2752
2756
(
2020
).
55.
W.
Wang
,
G.
Huang
,
D.
Ramasubramanian
, and
E.
Farantatos
, “
Transient stability analysis and stability margin evaluation of phase-locked loop synchronised converter-based generators
,”
IET Gen. Transm. Distrib.
14
,
5000
5010
(
2020
).
56.
Z.
Yang
,
M.
Zhan
,
D.
Liu
,
C.
Ye
,
K.
Cao
, and
S.
Cheng
, “
Small-signal synchronous stability of a new-generation power system with 100% renewable energy
,”
IEEE Trans. Power Syst.
(published online
2022
).
57.
X.
Fu
,
M.
Huang
,
S.
Pan
, and
X.
Zha
, “
Cascading synchronization instability in multi-VSC grid-connected system
,”
IEEE Trans. Power Electron.
37
,
7572
7576
(
2022
).
58.
M.
Taul
,
X.
Wang
,
P.
Davari
, and
F.
Blaabjerg
, “
Reduced-order and aggregated modeling of large-signal synchronization stability for multi-converter systems
,”
IEEE J. Emerg. Select. Top. Power Electron.
9
,
3150
3165
(
2021
).
59.
D.
Pal
and
B. K.
Panigrahi
, “
Reduced-order modeling and transient synchronization stability analysis of multiple heterogeneous grid-tied inverters
,”
IEEE Trans. Power Delivery
38
,
1074–1085
(
2022
).
60.
Y.
Zhou
,
J.
Hu
, and
W.
He
, “
Synchronization mechanism between power-synchronized VS and PLL-controlled CS and the resulting oscillations
,”
IEEE Trans. Power Syst.
37
,
4129
4132
(
2022
).
61.
A.
Sajadi
,
R.
Kenyon
, and
B.-M.
Hodge
, “
Synchronization in electric power networks with inherent heterogeneity up to 100% inverter-based renewable generation
,”
Nat. Commun.
13
,
2490
(
2022
).
62.
D.
Lew
,
D.
Bartlett
,
A.
Groom
et al., “
Getting to 100% renewables: Operating experiences with very high penetrations of variable energy resources
,”
IET Renew. Power Gen.
14
,
3899
3907
(
2020
).
63.
X.
Zhao
,
P.
Thakurta
, and
D.
Flynn
, “
Grid-forming requirements based on stability assessment for 100% converter-based Irish power system
,”
IET Renew. Power Gen.
16
,
447
458
(
2022
).
64.
W.
Tang
,
B.
Zhou
,
J.
Hu
,
Z.
Guo
, and
R.
Zhang
, “
Transient synchronous stability of PLL-based wind power-synchronous generation interconnected power system in rotor speed control timescale
,”
Proc. CSEE
41
,
6900
6915
(
2021
) (in Chinese).
65.
Y.
Chi
,
B.
Tang
,
J.
Hu
,
X.
Tian
,
H.
Tang
,
Y.
Li
,
S.
Sun
,
L.
Shi
, and
L.
Shuai
, “
Overview of mechanism and mitigation measures on multi-frequency oscillation caused by large-scale integration of wind power
,”
CSEE J. Power Energy Syst.
5
,
433
443
(
2019
).
66.
X.
Yang
,
R.
Ma
, and
M.
Zhan
, “
Dynamic and static network analysis and power transmission characteristics of power system oscillations
,” Proc. CSEE (published online
2022
) (in Chinese).
67.
J.
Vega-Herrera
,
C.
Rahmann
,
F.
Valencia
, and
K.
Strunz
, “
Analysis and application of quasi-static and dynamic phasor calculus for stability assessment of integrated power electric and electronic systems
,”
IEEE Trans. Power Syst.
36
,
1750
1760
(
2021
).
68.
N.
Pogaku
,
M.
Prodanovic
, and
T. C.
Green
, “
Modeling, analysis and testing of autonomous operation of an inverter-based microgrid
,”
IEEE Trans. Power Electron.
22
,
613
625
(
2007
).
69.
H.
Yang
and
X.
Yuan
, “
Modeling and analyzing the effect of frequency variation on weak grid-connected VSC system stability in DC voltage control timescale
,”
Energies
12
,
4458
(
2019
).
70.
Y.
Ji
,
W.
He
,
S.
Cheng
,
J.
Kurths
, and
M.
Zhan
, “
Dynamic network characteristics of power-electronics-based power systems
,”
Sci. Rep.
10
,
9946
(
2020
).
71.
Z.
Yang
,
J.
Yu
,
J.
Kurths
, and
M.
Zhan
, “
Nonlinear modeling of multi-converter systems within DC-link timescale
,”
IEEE J. Emerg. Select. Top. Circ. Syst.
11
,
5
16
(
2021
).
72.
A.
Yazdani
and
R.
Iravani
,
Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications
(
John Wiley & Sons
,
2010
).
73.
S.
Bacha
,
I.
Munteanu
, and
A. I.
Bratcu
,
Power Electronic Converters Modeling and Control
(
Springer
,
2014
).
74.
J.
Chen
,
M.
Liu
,
T.
O’Donnell
, and
F.
Milano
, “
Impact of current transients on the synchronization stability assessment of grid-feeding converters
,”
IEEE Trans. Power Syst.
35
,
4131
4134
(
2020
).
75.
Q.
Hu
,
L.
Fu
,
F.
Ma
,
F.
Ji
, and
Y.
Zhang
, “
Analogized synchronous-generator model of PLL-based VSC and transient synchronizing stability of converter dominated power system
,”
IEEE Trans. Sustain. Energy
12
,
1174
1185
(
2020
).
76.
X.
Yuan
,
S.
Cheng
, and
J.
Hu
, “
Multi-time scale voltage and power angle dynamics in power electronics dominated large power systems
,”
Proc. CSEE
36
,
5145
5154
(
2016
) (in Chinese).
77.
R.
Ma
,
Q.
Qiu
,
J.
Kurths
, and
M.
Zhan
, “
Fast-slow-scale interaction induced parallel resonance and its suppression in voltage source converters
,”
IEEE Access
9
,
90126
90141
(
2021
).
78.
W.
Du
,
Y.
Wang
,
H.
Wang
,
B.
Ren
, and
X.
Xiao
, “
Small-disturbance stability limit of a grid-connected wind farm with PMSGs in the timescale of DC voltage dynamics
,”
IEEE Trans. Power Syst.
36
,
2366
2379
(
2020
).
79.
M. G.
Taul
,
C.
Wu
,
S.-F.
Chou
, and
F.
Blaabjerg
, “
Optimal controller design for transient stability enhancement of grid-following converters under weak-grid conditions
,”
IEEE Trans. Power Electron.
36
,
10251
10264
(
2021
).
80.
X.
He
,
H.
Geng
, and
G.
Mu
, “
Modeling of wind turbine generators for power system stability studies: A review
,”
Renew. Sustain. Energy Rev.
143
,
110865
(
2021
).
81.
K.
Clark
,
N. W.
Miller
, and
J. J.
Sanchez-Gasca
, “
Modeling of GE wind turbine-generators for grid studies
,”
GE Energy Technical Report
(
2010
).
82.
N.
Ding
,
Z.
Lu
,
Y.
Qiao
, and
Y.
Min
, “
Simplified equivalent models of large-scale wind power and their application on small-signal stability
,”
J. Mod. Power Syst. Clean Energy
1
,
58
64
(
2013
).
83.
Y.
Chi
,
H.
Tang
,
W.
Shi
, and
Y.
Li
,
Modeling and Grid Integration Analysis of New Energy Generation
(
China Electric Power Press
,
2019
) (in Chinese).
84.
D.
Duckwitz
and
B.
Fischer
, “
Modeling and design of d f / d t-based inertia control for power converters
,”
IEEE J. Emerg. Select. Top. Power Electron.
5
,
1553
1564
(
2017
).
85.
C.
Ge
,
M.
Liu
, and
J.
Chen
, “
Modeling of direct-drive permanent magnet synchronous wind power generation system considering the power system analysis in multi-timescales
,”
Energies
15
,
7471
(
2022
).
86.
B.
Wu
,
Y.
Lang
,
N.
Zargari
, and
S.
Kouro
,
Power Conversion and Control of Wind Energy Systems
(
John Wiley & Sons
,
2011
), p.
66
.
87.
N.
Miller
,
J.
Sanchez-Gasca
,
W.
Price
, and
R.
Delmerico
, “Dynamic modeling of GE 1.5 and 3.6 MW wind turbine-generators for stability simulations,” in 2003 IEEE Power Engineering Society General Meeting (IEEE, 2003), Vol. 3, pp. 1977–1983.
88.
O. C.
Zevallos
,
J. B.
Da Silva
,
F.
Mancilla-David
,
F. A.
Neves
,
R. C.
Neto
, and
R. B.
Prada
, “
Control of photovoltaic inverters for transient and voltage stability enhancement
,”
IEEE Access
9
,
44363
44373
(
2021
).
89.
O.
Gandhi
,
D. S.
Kumar
,
C. D.
Rodríguez-Gallegos
, and
D.
Srinivasan
, “
Review of power system impacts at high PV penetration Part I: Factors limiting PV penetration
,”
Sol. Energy
210
,
181
201
(
2020
).
90.
M.
Yu
,
W.
Huang
,
N.
Tai
,
X.
Xi
, and
M. H.
Nadeem
, “
Adaptive control scheme based on transient stability mechanism for photovoltaic plants
,”
IET Gen. Trans. Distrib.
14
,
5011
5019
(
2020
).
91.
R.
Ma
,
X.
Yang
, and
M.
Zhan
, “Network algebraization and port relationship for power-electronic-dominated power systems,” arXiv:2304.09528 [eess.SY] (2023).
92.
H.
Haken
,
Synergetics: Introduction and Advanced Topics
(
Springer
,
Berlin
,
2004
).
93.
Q.
Qiu
,
Y.
Huang
,
R.
Ma
,
J.
Kurths
, and
M.
Zhan
, “
Black-box impedance prediction of grid-tied VSCs under variable operating conditions
,”
IEEE Access
10
,
1289
1304
(
2021
).
94.
M.
Li
, Thoughts on Operation and Control Methodology of Power Systems (STATE GRID Corporation of China, Xi’an, 2023), see https://mp.weixin.qq.com/s/UxKsyDUQQ-xxNiqId4ZPpQ.
95.
C.
Presigny
and
F. D. V.
Fallani
, “
Colloquium: Multiscale modeling of brain network organization
,”
Rev. Mod. Phys.
94
,
031002
(
2022
).
96.
Z.
Yang
,
R.
Ma
,
S.
Cheng
, and
M.
Zhan
, “
Problems and challenges of power-electronic-based power system stability: A case study of transient stability comparison
,”
Acta Phys. Sin.
69
,
103
116
(
2020
) (in Chinese).
You do not currently have access to this content.