Mobile intrinsic localized modes (ILMs) in balanced nonlinear capacitive-inductive cyclic transmission lines are studied by experiment, using a spatiotemporal driver under damped steady-state conditions. Without nonlinear balance, the experimentally observed resonance between the traveling ILM and normal modes of the nonlinear transmission line generates lattice drag via the production of a lattice backwave. In our experimental study of a balanced running ILM in a steady state, it is observed that the fundamental resonance can be removed over extended, well-defined driving frequency intervals and strongly suppressed over the complete ILM driving frequency range. Because both of these nonlinear capacitive and inductive elements display hysteresis our observation demonstrates that the experimental system, which is only partially self-dual, is surprisingly tolerant, regarding the precision necessary to eliminate the ILM backwave. It appears that simply balancing the cell dual nonlinearities makes the ILM envelope shape essentially the same at the two locations in the cell, so that the effective lattice discreteness seen by the ILM nearly vanishes.

1.
M.
Sato
,
H.
Furusawa
,
M.
Sakai
,
Y.
Soga
, and
A. J.
Sievers
,
Chaos
32
,
033118
(
2022
).
2.
M.
Sato
,
H.
Furusawa
,
Y.
Soga
, and
A. J.
Sievers
,
Phys. Rev. E
107
,
034202
(
2023
).
3.
T.
Kuusela
,
Chaos, Solitons Fractals
5
,
2419
(
1995
).
4.
M.
Remoissenet
,
Waves Called Solitons: Concepts and Experiments
(
Springer-Verlag
,
Berlin
,
1999
).
5.
A.
Scott
,
Nonlinear Science: Emergence and Dynamics of Coherent Structures
(
Oxford University Press
,
New York
,
1999
).
6.
D. K.
Campbell
,
S.
Flach
, and
Y. S.
Kivshar
,
Phys. Today
57
,
43
(
2004
).
7.
M.
Sato
,
B. E.
Hubbard
, and
A. J.
Sievers
,
Rev. Mod. Phys.
78
,
137
(
2006
).
8.
S.
Flach
and
A. V.
Gorbach
,
Phys. Rep.
467
,
1
(
2008
).
9.
A. J.
Fairbanks
,
A. M.
Darr
, and
A. L.
Garner
,
IEEE Access
8
,
148606
(
2020
).
10.
M.
Sato
,
M.
Sakai
, and
A. J.
Sievers
, in 13th Chaotic Modeling and Simulation, Springer Proceedings in Complexity, edited by C. H. Skiadas and Y. Dimotikalis (Springer, 2021), pp. 783–796.
11.
E.
Kengne
,
W.-M.
Liu
,
L. Q.
English
, and
B. A.
Malomed
,
Phys. Rep.
982
,
1
(
2022
).
12.
F.
Fallside
,
Proc. Inst. Electr. Eng.
113
,
263
(
1966
).
13.
M.
Rahman
and
K.
Wu
,
J. Appl. Phys.
132
,
223902
(
2022
).
14.
A. J.
Sievers
and
S.
Takeno
,
Phys. Rev. Lett.
61
,
970
(
1988
).
15.
S.
Flach
and
C.
Willis
,
Phys. Rep.
295
,
181
(
1998
).
16.
J. F.
Currie
,
S. E.
Trullinger
,
A. R.
Bishop
, and
J. A.
Krumhansl
,
Phys. Rev. B
15
,
5567
(
1977
).
17.
J. L.
Marín
,
F.
Falo
,
P. J.
Martínez
, and
L. M.
Floría
,
Phys. Rev. E
63
,
066603
(
2001
).
18.
A. V.
Gorbach
and
M.
Johansson
,
Phys. Rev. E
67
,
066608
(
2003
).
19.
R.
Khomeriki
,
S.
Lepri
, and
S.
Ruffo
,
Phys. Rev. E
70
,
066626
(
2004
).
20.
J.
Gomez-Gardenes
,
L. M.
Floria
,
M.
Peyrard
, and
A. R.
Bishop
,
Chaos
14
,
1130
(
2004
).
21.
J.
Gomez-Gardenes
,
F.
Falo
, and
L.
Floria
,
Phys. Lett. A
332
,
213
(
2004
).
22.
K.
Yoshimura
and
Y.
Doi
,
Wave Motion
45
,
83
(
2007
).
23.
M.
Sato
,
T.
Nakaguchi
,
T.
Ishikawa
,
S.
Shige
,
Y.
Soga
,
Y.
Doi
, and
A. J.
Sievers
,
Chaos
25
,
103122
(
2015
).
24.
L. L.
Bonilla
and
B. A.
Malomed
,
Phys. Rev. B
43
,
11539
(
1991
).
25.
K.
Tse Ve Koon
,
J.
Leon
,
P.
Marquie
, and
P.
Tchofo-Dinda
,
Phys. Rev. E
75
,
066604
(
2007
).
26.
D.
Zueco
,
P. J.
Martínez
,
L. M.
Floría
, and
F.
Falo
,
Phys. Rev. E
71
,
036613
(
2005
).
27.
M.
Johansson
,
J. E.
Prilepsky
, and
S. A.
Derevyanko
,
Phys. Rev. E
89
,
042912
(
2014
).
28.
C. L.
Gninzanlong
,
F. T.
Ndjomatchoua
, and
C.
Tchawoua
,
Phys. Rev. E
99
,
052210
(
2019
).
30.
P.
Marquié
,
J. M.
Bilbault
, and
M.
Remoissenet
,
Phys. Rev. E
49
,
828
(
1994
).
31.
P.
Marquié
,
J. M.
Bilbault
, and
M.
Remoissenet
,
Phys. Rev. E
51
,
6127
(
1995
).
32.
L. Q.
English
,
R. B.
Thakur
, and
R.
Stearrett
,
Phys. Rev. E
77
,
066601
(
2008
).
33.
L. Q.
English
,
F.
Palmero
,
A. J.
Sievers
,
P. G.
Kevrekidis
, and
D. H.
Barnak
,
Phys. Rev. E
81
,
046605
(
2010
).
34.
F.
Palmero
,
L. Q.
English
,
J.
Cuevas
,
R.
Carretero-González
, and
P. G.
Kevrekidis
,
Phys. Rev. E
84
,
026605
(
2011
).
35.
L.
English
,
S.
Wheeler
,
Y.
Shen
,
G.
Veldes
,
N.
Whitaker
,
P.
Kevrekidis
, and
D.
Frantzeskakis
,
Phys. Lett. A
375
,
1242
(
2011
).
36.
W.
Shi
,
S.
Shige
,
Y.
Soga
,
M.
Sato
, and
A. J.
Sievers
,
Europhys. Lett.
103
,
30006
(
2013
).
37.
M.
Kimura
,
Y.
Matsushita
, and
T.
Hikihara
,
Phys. Lett. A
380
,
2823
(
2016
).
38.
Y.
Watanabe
,
T.
Nishida
,
Y.
Doi
, and
N.
Sugimoto
,
Phys. Lett. A
382
,
1957
(
2018
).
39.
F.
Palmero
,
J.
Cuevas-Maraver
,
L. Q.
English
,
W.
Li
, and
R.
Chacón
,
Phys. Scr.
94
,
065210
(
2019
).
40.
F.
Palmero
,
L. Q.
English
,
X.-L.
Chen
,
W.
Li
,
J.
Cuevas-Maraver
, and
P. G.
Kevrekidis
,
Phys. Rev. E
99
,
032206
(
2019
).
41.
L. P.
Silva Neto
,
J. O.
Rossi
,
J. J.
Barroso
, and
E.
Schamiloglu
,
IEEE Trans. Plasma Sci.
46
,
3648
(
2018
).
42.
T.
Rössler
and
J. B.
Page
,
Phys. Lett. A
204
,
418
(
1995
).
43.
S.
Flach
,
A. E.
Miroshnichenko
,
V.
Fleurov
, and
M. V.
Fistul
,
Phys. Rev. Lett.
90
,
084101
(
2003
).
44.
A. E.
Miroshnichenko
,
S.
Flach
, and
Y. S.
Kivshar
,
Rev. Mod. Phys.
82
,
2257
(
2010
).
45.
46.
S.
Flach
,
Y.
Zolotaryuk
, and
K.
Kladko
,
Phys. Rev. E
59
,
6105
(
1999
).
47.
S. V.
Dmitriev
,
P. G.
Kevrekidis
,
N.
Yoshikawa
, and
D. J.
Frantzeskakis
,
Phys. Rev. E
74
,
046609
(
2006
).
48.
M.
Kimura
and
T.
Hikihara
,
Chaos
19
,
013138
(
2009
).
49.
Y.
Doi
and
K.
Yoshimura
,
Phys. Rev. Lett.
117
,
014101
(
2016
).
50.
L.
Brillouin
,
Wave Propagation in Periodic Structures—Electric Filters and Crystal Lattices
,
2nd ed.
(
Dover
,
1953
).
You do not currently have access to this content.