We investigate various estimators based on extreme value theory (EVT) for determining the local fractal dimension of chaotic dynamical systems. In the limit of an infinitely long time series of an ergodic system, the average of the local fractal dimension is the system’s global attractor dimension. The latter is an important quantity that relates to the number of effective degrees of freedom of the underlying dynamical system, and its estimation has been a central topic in the dynamical systems literature since the 1980s. In this work, we propose a framework that combines phase space recurrence analysis with EVT to estimate the local fractal dimension around a particular state of interest. While the EVT framework allows for the analysis of high-dimensional complex systems, such as the Earth’s climate, its effectiveness depends on robust statistical parameter estimation for the assumed extreme value distribution. In this study, we conduct a critical review of several EVT-based local fractal dimension estimators, analyzing and comparing their performance across a range of systems. Our results offer valuable insights for researchers employing the EVT-based estimates of the local fractal dimension, aiding in the selection of an appropriate estimator for their specific applications.

1.
V.
Lucarini
,
D.
Faranda
,
A.
de Freitas
,
J.
de Freitas
,
M.
Holland
,
T.
Kuna
,
M.
Nicol
,
M.
Todd
, and
S.
Vaienti
, Extremes and Recurrence in Dynamical Systems, Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts (Wiley, 2016).
2.
A. A.
Balkema
and
L.
De Haan
, “
Residual life time at great age
,”
Ann. Probab.
2
,
792
804
(
1974
).
3.
J.
Pickands
, III
, “
Statistical inference using extreme order statistics
,”
Ann. Stat.
3
,
119
131
(
1975
).
4.
M.
Leadbetter
and
H.
Rootzen
, “
Extremal theory for stochastic processes
,”
Ann. Probab.
16
,
431
478
(
1988
).
5.
R. L.
Smith
and
I.
Weissman
, “
Estimating the extremal index
,”
J. R. Stat. Soc., Series B
56
,
515
528
(
1994
).
6.
D.
Faranda
,
G.
Messori
,
M. C.
Alvarez-Castro
, and
P.
Yiou
, “
Dynamical properties and extremes of northern hemisphere climate fields over the past 60 years
,”
Nonlinear Processes Geophys.
24
,
713
725
(
2017
).
7.
S.
Buschow
and
P.
Friederichs
, “
Local dimension and recurrent circulation patterns in long-term climate simulations
,”
Chaos
28
,
083124
(
2018
).
8.
M.
Brunetti
,
J.
Kasparian
, and
C.
Vérard
, “
Co-existing climate attractors in a coupled aquaplanet
,”
Clim. Dyn.
53
,
6293
6308
(
2019
).
9.
D.
Faranda
,
M. C.
Alvarez-Castro
,
G.
Messori
,
D.
Rodrigues
, and
P.
Yiou
, “
The hammam effect or how a warm ocean enhances large scale atmospheric predictability
,”
Nat. Commun.
10
,
1316
(
2019
).
10.
D.
Rodrigues
,
M. C.
Alvarez-Castro
,
G.
Messori
,
P.
Yiou
,
Y.
Robin
, and
D.
Faranda
, “
Dynamical properties of the North Atlantic atmospheric circulation in the past 150 years in CMIP5 models and the 20CRv2c reanalysis
,”
J. Clim.
31
,
6097
6111
(
2018
).
11.
F.
Falasca
and
A.
Bracco
, “
Exploring the tropical pacific manifold in models and observations
,”
Phys. Rev. X
12
,
021054
(
2022
).
12.
G.
Messori
,
R.
Caballero
, and
D.
Faranda
, “
A dynamical systems approach to studying midlatitude weather extremes
,”
Geophys. Res. Lett.
44
,
3346
3354
, https://doi.org/10.1002/2017GL072879 (
2017
).
13.
S.
Scher
and
G.
Messori
, “
Predicting weather forecast uncertainty with machine learning
,”
Q. J. R. Meteorol. Soc.
144
,
2830
2841
(
2018
).
14.
A.
Hochman
,
P.
Alpert
,
T.
Harpaz
,
H.
Saaroni
, and
G.
Messori
, “
A new dynamical systems perspective on atmospheric predictability: Eastern mediterranean weather regimes as a case study
,”
Sci. Adv.
5
,
eaau0936
(
2019
).
15.
A.
Hochman
,
P.
Alpert
,
P.
Kunin
,
D.
Rostkier-Edelstein
,
T.
Harpaz
,
H.
Saaroni
, and
G.
Messori
, “
The dynamics of cyclones in the twentyfirst century: The Eastern Mediterranean as an example
,”
Clim. Dyn.
54
,
561
574
(
2019
).
16.
A.
Hochman
,
S.
Scher
,
J.
Quinting
,
J. G.
Pinto
, and
G.
Messori
, “
A new view of heat wave dynamics and predictability over the Eastern Mediterranean
,”
Earth Syst. Dyn.
12
,
133
149
(
2021
).
17.
A.
Hochman
,
S.
Scher
,
J.
Quinting
,
J. G.
Pinto
, and
G.
Messori
, “
Dynamics and predictability of cold spells over the Eastern Mediterranean
,”
Clim. Dyn.
58
,
2047
2064
(
2022
).
18.
D.
Faranda
,
G.
Messori
, and
P.
Yiou
, “
Dynamical proxies of North Atlantic predictability and extremes
,”
Sci. Rep.
7
,
41278
(
2017
).
19.
D.
Faranda
,
Y.
Sato
,
G.
Messori
,
N. R.
Moloney
, and
P.
Yiou
, “
Minimal dynamical systems model of the northern hemisphere jet stream via embedding of climate data
,”
Earth Syst. Dyn.
10
,
555
567
(
2019
).
20.
G.
Messori
,
N.
Harnik
,
E.
Madonna
,
O.
Lachmy
, and
D.
Faranda
, “
A dynamical systems characterization of atmospheric jet regimes
,”
Earth Syst. Dyn.
12
,
233
251
(
2021
).
21.
A.
Hochman
,
G.
Messori
,
J. F.
Quinting
,
J. G.
Pinto
, and
C. M.
Grams
, “
Do Atlantic-European weather regimes physically exist?
,”
Geophys. Res. Lett.
48
,
e2021GL095574
, https://doi.org/10.1029/2021GL095574 (
2021
).
22.
P.
De Luca
,
G.
Messori
,
F.
Pons
, and
D.
Faranda
, “
Dynamical systems theory sheds new light on compound climate extremes in Europe and Eastern North America
,”
Q. J. R. Meteorol. Soc.
146
,
1636
(
2020
).
23.
K.
Giamalaki
,
C.
Beaulieu
,
S.
Henson
,
A.
Martin
,
H.
Kassem
, and
D.
Faranda
, “
Future intensification of extreme Aleutian low events and their climate impacts
,”
Sci. Rep.
11
,
18395
(
2021
).
24.
D.
Faranda
,
G.
Messori
,
P.
Yiou
,
S.
Thao
,
F.
Pons
, and
B.
Dubrulle
, “
Dynamical footprints of hurricanes in the tropical dynamics
,”
Chaos
33
,
013101
(
2023
).
25.
M.
Ginesta
,
P.
Yiou
,
G.
Messori
, and
D.
Faranda
, “
A methodology for attributing severe extratropical cyclones to climate change based on reanalysis data: The case study of storm Alex 2020
,”
Clim. Dyn.
61
,
1
25
(
2022
).
26.
G.
Messori
and
D.
Faranda
, “
Characterising and comparing different palaeoclimates with dynamical systems theory
,”
Clim. Past
17
,
545
563
(
2021
).
27.
A.
Gualandi
,
J.-P.
Avouac
,
S.
Michel
, and
D.
Faranda
, “
The predictable chaos of slow earthquakes
,”
Sci. Adv.
6
,
eaaz5548
(
2020
).
28.
F.
Hausdorff
, “
Dimension und äußeres maß
,”
Math. Ann.
79
,
157
179
(
1918
).
29.
C.
Nicolis
and
G.
Nicolis
, “
Is there a climatic attractor?
,”
Nature
311
,
529
532
(
1984
).
30.
P.
Grassberger
, “
Do climatic attractors exist?
,”
Nature
323
,
609
(
1986
).
31.
E. N.
Lorenz
, “
Dimension of weather and climate attractors
,”
Nature
353
,
241
244
(
1991
).
32.
F. M. E.
Pons
,
G.
Messori
,
M. C.
Alvarez-Castro
, and
D.
Faranda
, “
Sampling hyperspheres via extreme value theory: Implications for measuring attractor dimensions
,”
J. Stat. Phys.
179
,
1698
1717
(
2020
).
33.
A. C. M.
Freitas
,
J. M.
Freitas
, and
M.
Todd
, “
Hitting time statistics and extreme value theory
,”
Probab. Theory Relat. Fields
147
,
675
710
(
2010
).
34.
D.
Faranda
,
V.
Lucarini
,
G.
Turchetti
, and
S.
Vaienti
, “
Numerical convergence of the block-maxima approach to the generalized extreme value distribution
,”
J. Stat. Phys.
145
,
1156
1180
(
2011
).
35.
T.
Caby
,
D.
Faranda
,
G.
Mantica
,
S.
Vaienti
, and
P.
Yiou
, “Generalized dimensions, large deviations and the distribution of rare events,” arXiv:1812.00036 (2018).
36.
T.
Carletti
and
S.
Galatolo
, “
Numerical estimates of local dimension by waiting time and quantitative recurrence
,”
Physica A
364
,
120
128
(
2006
).
37.
R.
Vitolo
,
M. P.
Holland
, and
C. A.
Ferro
, “
Robust extremes in chaotic deterministic systems
,”
Chaos
19
,
043127
(
2009
).
38.
P.
de Zea Bermudez
and
S.
Kotz
, “
Parameter estimation of the generalized Pareto distribution—Part I
,”
J. Stat. Plann. Inf.
140
,
1353
1373
(
2010
).
39.
P.
de Zea Bermudez
and
S.
Kotz
, “
Parameter estimation of the generalized Pareto distribution—Part II
,”
J. Stat. Plann. Inf.
140
,
1374
1388
(
2010
).
40.
R.
Bellman
,
Dynamic Programming
(
Princeton University Press
,
Princeton
,
1957
).
41.
R. A.
Fisher
, “On an absolute criterion for fitting frequency curves,” in Messenger of Mathematics (Macmillan Publishers, 1912), Vol. 41, pp. 155–156.
42.
G.
Casella
and
R. L.
Berger
,
Statistical Inference
(
Duxbury Pacific Grove
,
CA
,
2002
), Vol. 2.
43.
L.
Belzile
et al., mev: Modelling Extreme Values (2022), R package version 1.14.
44.
S. D.
Grimshaw
, “
Computing maximum likelihood estimates for the generalized Pareto distribution
,”
Technometrics
35
,
185
191
(
1993
).
45.
J. A.
Villaseñor-Alva
and
E.
González-Estrada
, “A bootstrap goodness of fit test for the generalized Pareto distribution,” in Computational Statistics and Data Analysis (Elsevier, 2009), pp. 3835–3841.
46.
J. A.
Villaseñor-Alva
and
E.
González-Estrada
, gPdtest: Bootstrap goodness-of-fit test for the generalized Pareto distribution (2012), R package version 0.4.
47.
J. M.
Landwehr
,
N.
Matalas
, and
J.
Wallis
, “
Probability weighted moments compared with some traditional techniques in estimating Gumbel Parameters and quantiles
,”
Water Resources Res.
15
,
1055
1064
, https://doi.org/10.1029/WR015i005p01055 (
1979
).
48.
J. R. M.
Hosking
,
J. R.
Wallis
, and
E. F.
Wood
, “
Estimation of the generalized extreme-value distribution by the method of probability-weighted moments
,”
Technometrics
27
,
251
261
(
1985
).
49.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
50.
H.
Hersbach
,
B.
Bell
,
P.
Berrisford
,
S.
Hirahara
,
A.
Horányi
,
J.
Muñoz-Sabater
,
J.
Nicolas
,
C.
Peubey
,
R.
Radu
,
D.
Schepers
et al., “
The ERA5 global reanalysis
,”
Q. J. R. Meteorol. Soc.
146
,
1999
2049
(
2020
).
51.
P.
Grassberger
and
I.
Procaccia
, “
Characterization of strange attractors
,”
Phys. Rev. Lett.
50
,
346
(
1983
).
52.
D.
Viswanath
, “
The fractal property of the Lorenz attractor
,”
Phys. D
190
,
115
128
(
2004
).
53.
V. M.
Muggeo
, “
Estimating regression models with unknown break-points
,”
Stat. Med.
22
,
3055
3071
(
2003
).
54.
L.
Fery
,
B.
Dubrulle
,
B.
Podvin
,
F.
Pons
, and
D.
Faranda
, “
Learning a weather dictionary of atmospheric patterns using latent dirichlet allocation
,”
Geophys. Res. Lett.
49
,
e2021GL096184
, https://doi.org/10.1029/2021GL096184 (
2022
).
55.
F.
Pons
,
G.
Messori
, and
D.
Faranda
, “
Stability of attractor local dimension estimates in non-Axiom A dynamical systems
,”
Zenodo
(2023).

Supplementary Material

You do not currently have access to this content.