Traditional network analysis focuses on the representation of complex systems with only pairwise interactions between nodes. However, the higher-order structure, which is beyond pairwise interactions, has a great influence on both network dynamics and function. Ranking cliques could help understand more emergent dynamical phenomena in large-scale complex networks with higher-order structures, regarding important issues, such as behavioral synchronization, dynamical evolution, and epidemic spreading. In this paper, motivated by multi-node interactions in a topological simplex, several higher-order centralities are proposed, namely, higher-order cycle (HOC) ratio, higher-order degree, higher-order H-index, and higher-order PageRank (HOP), to quantify and rank the importance of cliques. Experiments on both synthetic and real-world networks support that, compared with other traditional network metrics, the proposed higher-order centralities effectively reduce the dimension of a large-scale network and are more accurate in finding a set of vital nodes. Moreover, since the critical cliques ranked by the HOP and the HOC are scattered over a complex network, the HOP and the HOC outperform other metrics in ranking cliques that are vital in maintaining the network connectivity, thereby facilitating network dynamical synchronization and virus spread control in applications.

1.
A.-L.
Barabási
and
E.
Bonabeau
, “
Scale-free networks
,”
Sci. Am.
288
,
60
69
(
2003
); available at https://www.jstor.org/stable/26060284.
2.
H.
Kang
,
M.
Sun
,
Y.
Yu
,
X.
Fu
, and
B.
Bao
, “
Spreading dynamics of an SEIR model with delay on scale-free networks
,”
IEEE Trans. Network Sci. Eng.
7
,
489
496
(
2018
).
3.
K. A.
Kabir
,
K.
Kuga
, and
J.
Tanimoto
, “
The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network—A theoretical approach
,”
Chaos Soliton. Fract.
132
,
109548
(
2020
).
4.
X.-J.
Li
,
C.
Li
, and
X.
Li
, “
Minimizing social cost of vaccinating network sis epidemics
,”
IEEE Trans. Network Sci. Eng.
5
,
326
335
(
2017
).
5.
Y.
Shang
, “
Immunization of networks with limited knowledge and temporary immunity
,”
Chaos
31
,
053117
(
2021
).
6.
C.
Li
,
Y.
Zhang
, and
X.
Li
, “
Epidemic threshold in temporal multiplex networks with individual layer preference
,”
IEEE Trans. Network Sci. Eng.
8
,
814
824
(
2021
).
7.
J.
Wu
,
J.
Shen
,
B.
Zhou
,
X.
Zhang
, and
B.
Huang
, “
General link prediction with influential node identification
,”
Physica A
523
,
996
1007
(
2019
).
8.
L.
,
M.
Medo
,
C. H.
Yeung
,
Y.-C.
Zhang
,
Z.-K.
Zhang
, and
T.
Zhou
, “
Recommender systems
,”
Phys. Rep.
519
,
1
49
(
2012
).
9.
M.
Tumminello
,
S.
Micciche
,
F.
Lillo
,
J.
Piilo
, and
R. N.
Mantegna
, “
Statistically validated networks in bipartite complex systems
,”
PLoS One
6
,
e17994
(
2011
).
10.
C.-Y.
Chen
,
Y.
Zhao
,
H.
Qin
,
X.
Meng
, and
J.
Gao
, “
Robustness of interdependent scale-free networks based on link addition strategies
,”
Physica A
604
,
127851
(
2022
).
11.
D.-B.
Chen
,
H.-L.
Sun
,
Q.
Tang
,
S.-Z.
Tian
, and
M.
Xie
, “
Identifying influential spreaders in complex networks by propagation probability dynamics
,”
Chaos
29
,
033120
(
2019
).
12.
L. C.
Freeman
, “
Centrality in social networks conceptual clarification
,”
Social Networks
1
,
215
239
(
1978
).
13.
D.
Chen
,
L.
,
M.-S.
Shang
,
Y.-C.
Zhang
, and
T.
Zhou
, “
Identifying influential nodes in complex networks
,”
Physica A
391
,
1777
1787
(
2012
).
14.
D.-B.
Chen
,
H.
Gao
,
L.
, and
T.
Zhou
, “
Identifying influential nodes in large-scale directed networks: The role of clustering
,”
PLoS One
8
,
e77455
(
2013
).
15.
M.
Kitsak
,
L. K.
Gallos
,
S.
Havlin
,
F.
Liljeros
,
L.
Muchnik
,
H. E.
Stanley
, and
H. A.
Makse
, “
Identification of influential spreaders in complex networks
,”
Nat. Phys.
6
,
888
893
(
2010
).
16.
J. E.
Hirsch
, “
An index to quantify an individual’s scientific research output
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
16569
16572
(
2005
).
17.
L. C.
Freeman
, “
A set of measures of centrality based on betweenness
,”
Sociometry
40
,
35
41
(
1977
).
18.
P.
Hage
and
F.
Harary
, “
Eccentricity and centrality in networks
,”
Social Networks
17
,
57
63
(
1995
).
19.
G.
Sabidussi
, “
The centrality index of a graph
,”
Psychometrika
31
,
581
603
(
1966
).
20.
G. M.
Wittenbaum
,
A. P.
Hubbell
, and
C.
Zuckerman
, “
Mutual enhancement: Toward an understanding of the collective preference for shared information
,”
J. Person. Social Psychol.
77
,
967
(
1999
).
21.
P.
Bonacich
, “
Some unique properties of eigenvector centrality
,”
Social Networks
29
,
555
564
(
2007
).
22.
S.
Brin
and
L.
Page
, “
The anatomy of a large-scale hypertextual web search engine
,”
Comp. Networks ISDN Syst.
30
,
107
117
(
1998
).
23.
L.
,
Y.-C.
Zhang
,
C. H.
Yeung
, and
T.
Zhou
, “
Leaders in social networks, the delicious case
,”
PLoS One
6
,
e21202
(
2011
).
24.
T.
Martin
,
X.
Zhang
, and
M. E.
Newman
, “
Localization and centrality in networks
,”
Phys. Rev. E
90
,
052808
(
2014
).
25.
R.
Lempel
and
S.
Moran
, “
The stochastic approach for link-structure analysis (salsa) and the TKC effect
,”
Comp. Networks
33
,
387
401
(
2000
).
26.
J.
Ugander
,
L.
Backstrom
,
C.
Marlow
, and
J.
Kleinberg
, “
Structural diversity in social contagion
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
5962
5966
(
2012
).
27.
A. E.
Sizemore
,
C.
Giusti
,
A.
Kahn
,
J. M.
Vettel
,
R. F.
Betzel
, and
D. S.
Bassett
, “
Cliques and cavities in the human connectome
,”
J. Comput. Neurosci.
44
,
115
145
(
2018
).
28.
D.
Shi
,
Z.
Chen
,
X.
Sun
,
Q.
Chen
,
C.
Ma
,
Y.
Lou
, and
G.
Chen
, “
Computing cliques and cavities in networks
,”
Commun. Phys.
4
,
1
7
(
2021
).
29.
F.
Battiston
,
G.
Cencetti
,
I.
Iacopini
,
V.
Latora
,
M.
Lucas
,
A.
Patania
,
J.-G.
Young
, and
G.
Petri
, “
Networks beyond pairwise interactions: Structure and dynamics
,”
Phys. Rep.
874
,
1
92
(
2020
).
30.
I.
Iacopini
,
G.
Petri
,
A.
Barrat
, and
V.
Latora
, “
Simplicial models of social contagion
,”
Nat. Commun.
10
,
1
9
(
2019
).
31.
S.
Chowdhary
,
A.
Kumar
,
G.
Cencetti
,
I.
Iacopini
, and
F.
Battiston
, “
Simplicial contagion in temporal higher-order networks
,”
J. Phys.: Complexity
2
,
035019
(
2021
).
32.
D.
Shi
and
G.
Chen
, “
Simplicial networks: A powerful tool for characterizing higher-order interactions
,”
Natl. Sci. Rev.
9
,
nwac038
(
2022
).
33.
R.
Ghorbanchian
,
J. G.
Restrepo
,
J. J.
Torres
, and
G.
Bianconi
, “
Higher-order simplicial synchronization of coupled topological signals
,”
Commun. Phys.
4
,
1
13
(
2021
).
34.
Y.
Tang
,
D.
Shi
, and
L.
, “
Optimizing higher-order network topology for synchronization of coupled phase oscillators
,”
Commun. Phys.
5
,
1
12
(
2022
).
35.
L.
,
T.
Zhou
,
Q.-M.
Zhang
, and
H. E.
Stanley
, “
The H-index of a network node and its relation to degree and coreness
,”
Nat. Commun.
7
,
1
7
(
2016
).
36.
T.
Fan
,
L.
,
D.
Shi
, and
T.
Zhou
, “
Characterizing cycle structure in complex networks
,”
Commun. Phys.
4
,
1
9
(
2021
).
37.
L.-H.
Lim
, “
Hodge Laplacians on graphs
,”
SIAM Rev.
62
,
685
715
(
2020
).
38.
D. H.
Serrano
,
J.
Hernández-Serrano
, and
D. S.
Gómez
, “
Simplicial degree in complex networks. Applications of topological data analysis to network science
,”
Chaos Soliton. Fract.
137
,
109839
(
2020
).
39.
D. S.
Callaway
,
M. E.
Newman
,
S. H.
Strogatz
, and
D. J.
Watts
, “
Network robustness and fragility: Percolation on random graphs
,”
Phys. Rev. Lett.
85
,
5468
(
2000
).
40.
A. P.
Millán
,
J. J.
Torres
, and
G.
Bianconi
, “
Explosive higher-order Kuramoto dynamics on simplicial complexes
,”
Phys. Rev. Lett.
124
,
218301
(
2020
).
41.
L.
Zino
and
M.
Cao
, “
Analysis, prediction, and control of epidemics: A survey from scalar to dynamic network models
,”
IEEE Circ. Syst. Mag.
21
,
4
23
(
2021
).
42.
X.
Li
,
X.
Wang
, and
G.
Chen
, “
Pinning a complex dynamical network to its equilibrium
,”
IEEE Trans. Circ. Syst. I
51
,
2074
2087
(
2004
).
43.
L. V.
Gambuzza
,
F.
Di Patti
,
L.
Gallo
,
S.
Lepri
,
M.
Romance
,
R.
Criado
,
M.
Frasca
,
V.
Latora
, and
S.
Boccaletti
, “
Stability of synchronization in simplicial complexes
,”
Nat. Commun.
12
,
1
13
(
2021
).
44.
M.
Pirani
and
S.
Sundaram
, “
On the smallest eigenvalue of grounded Laplacian matrices
,”
IEEE Trans. Autom. Control
061
,
509
514
(
2015
).
45.
H.
Liu
,
X.
Xu
,
J.-A.
Lu
,
G.
Chen
, and
Z.
Zeng
, “
Optimizing pinning control of complex dynamical networks based on spectral properties of grounded Laplacian matrices
,”
IEEE Trans. Syst. Man Cybernet.
51
,
786
796
(
2018
).
46.
R.
Rossi
and
N.
Ahmed
, “The network data repository with interactive graph analytics and visualization,” in
Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI Press, Palo Alto, 2015).
47.
L.
,
D.
Chen
,
X.-L.
Ren
,
Q.-M.
Zhang
,
Y.-C.
Zhang
, and
T.
Zhou
, “
Vital nodes identification in complex networks
,”
Phys. Rep.
650
,
1
63
(
2016
).
48.
K.
Kovalenko
,
I.
Sendiña-Nadal
,
N.
Khalil
,
A.
Dainiak
,
D.
Musatov
,
A. M.
Raigorodskii
,
K.
Alfaro-Bittner
,
B.
Barzel
, and
S.
Boccaletti
, “
Growing scale-free simplices
,”
Commun. Phys.
4
,
1
9
(
2021
).
You do not currently have access to this content.