The permutation largest slope entropy (PLSE) algorithm has been shown to be effective to distinguish between regular and non-regular dynamics from time series analysis. However, as it is the case for many non-linear time series analysis algorithms, such a characterization is locally made and does not allow one to capture some micro-phenomena, such as intermittency, that may occur in the system behavior. This paper presents a PIC micro-controller based implementation of the PLSE for a real-time monitoring of system dynamics. The PLSE algorithm is optimized to fit the program and data memory of low-end processors using the XC8 compiler and the MPLAB X IDE. The resulting algorithm is implemented on the PIC16F18446 and deployed on the Explorer 8 development board. The effectiveness of the developed tool is validated by considering an electrical circuit of the Duffing oscillator that can generate both periodic and chaotic dynamics. By comparing the PLSE values with the phase portraits and previous results on the Duffing oscillator circuit, the developed tool efficiently allows one to monitor the behavior of dynamical systems.

1.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
,
174102
(
2002
).
2.
S. M.
Bruijn
,
D. J.
Bregman
,
O. G.
Meijer
,
P. J.
Beek
, and
J. H.
van Dieën
, “
Maximum Lyapunov exponents as predictors of global gait stability: A modelling approach
,”
Med. Eng. Phys.
34
,
428
436
(
2012
).
3.
G. A.
Gottwald
and
I.
Melbourne
, “The 0-1 test for chaos: A review,” in Chaos Detection and Predictability (Springer, 2016), pp. 221–247.
4.
J. S. A.
Eyebe Fouda
,
B.
Bodo
,
S. L.
Sabat
, and
J. Y.
Effa
, “
A modified 0-1 test for chaos detection in oversampled time series observations
,”
Int. J. Bifurc. Chaos
24
,
1450063
(
2014
).
5.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Phys. D
16
,
285
317
(
1985
).
6.
Y. B.
Pesin
, “
Characteristic Lyapunov exponents and smooth ergodic theory
,”
Russ. Math. Surv.
32
,
55
(
1977
).
7.
V.
Latora
and
M.
Baranger
, “
Kolmogorov-Sinai entropy rate versus physical entropy
,”
Phys. Rev. Lett.
82
,
520
(
1999
).
8.
C.
Bogaert
,
F.
Beckers
,
D.
Ramaekers
, and
A. E.
Aubert
, “
Analysis of heart rate variability with correlation dimension method in a normal population and in heart transplant patients
,”
Auton. Neurosci.
90
,
142
147
(
2001
).
9.
E.
Thelen
and
L. B.
Smith
, “Dynamic systems theories,” in Handbook of Child Psychology: Theoretical Models of Human Development, edited by W. Damon and R. M. Lerner (John Wiley & Sons Inc., 1998), pp. 563–634.
10.
A. M.
Unakafov
and
K.
Keller
, “
Conditional entropy of ordinal patterns
,”
Phys. D
269
,
94
102
(
2014
).
11.
D.
Zhou
,
Q.
Liu
,
J. C.
Platt
,
C.
Meek
, and
N. B.
Shah
, “Regularized minimax conditional entropy for crowdsourcing,” arXiv:1503.07240 (2015).
12.
J. S. A.
Eyebe Fouda
and
W.
Koepf
, “
Detecting regular dynamics from time series using permutations slopes
,”
Commun. Nonlinear Sci. Numer. Simul.
27
,
216
227
(
2015
).
13.
J. S. A.
Eyebe Fouda
, “
Applicability of the permutation largest slope entropy to strange nonchaotic attractors
,”
Nonlinear Dyn.
87
,
1859
1871
(
2017
).
14.
T.
Haddad
,
N.
Ben-Hamida
,
L.
Talbi
,
A.
Lakhssassi
, and
S.
Aouini
, “
Temporal epilepsy seizures monitoring and prediction using cross-correlation and chaos theory
,”
Healthc. Technol. Lett.
1
,
45
50
(
2014
).
15.
S.
Tagne
,
B.
Bodo
,
G. F. V.
A. Eyebe
, and
J. S. A.
Eyebe Fouda
, “
PIC micro-controller based synchronization of two fractional order jerk systems
,”
Sci. Rep.
12
,
14281
(
2022
).
16.
E. E.
García-Guerrero
,
E.
Inzunza-González
,
O. R.
López-Bonilla
,
J. R.
Cárdenas-Valdez
, and
E.
Tlelo-Cuautle
, “
Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via ZigBee channels
,”
Chaos, Solitons Fractals
133
,
109646
(
2020
).
17.
M.
Small
,
D.
Yu
,
I.
Grubb
,
J.
Simonotto
,
K.
Fox
, and
R.
Harrison
, “Automatic identification and recording of cardiac arrhythmia,” in Computers in Cardiology 2000. Vol. 27 (Cat. 00CH37163) (IEEE, 2000), pp. 355–358.
18.
J. S. A.
Eyebe Fouda
, “
The matching energy: A novel approach for measuring complexity in time series
,”
Nonlinear Dyn.
86
,
2049
2060
(
2016
).
19.
S. S.
Parmar
and
A. P.
Gharge
, “R-2R ladder circuit design for 32-bit digital-to-analog converter (DAC) with noise analysis and performance parameters,” in 2016 International Conference on Communication and Signal Processing (ICCSP) (IEEE, 2016), pp. 0467–0471.
20.
S.
Wiggins
, “
Chaos in the quasiperiodically forced Duffing oscillator
,”
Phys. Lett. A
124
,
138
142
(
1987
).
21.
A.
Sharma
,
V.
Patidar
,
G.
Purohit
, and
K.
Sud
, “
Effects on the bifurcation and chaos in forced Duffing oscillator due to nonlinear damping
,”
Commun. Nonlinear Sci. Numer. Simul.
17
,
2254
2269
(
2012
).
22.
G.
Wang
and
S.
He
, “
A quantitative study on detection and estimation of weak signals by using chaotic Duffing oscillators
,”
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
50
,
945
953
(
2003
).
23.
J. S. A.
Eyebe Fouda
,
B.
Bodo
,
G. M.
Djeufa
, and
S. L.
Sabat
, “
Experimental chaos detection in the Duffing oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
33
,
259
269
(
2016
).
24.
B.
Bodo
,
J. S. A.
Fouda
,
E.
Fouda
,
A.
Mvogo
, and
S.
Tagne
, “
Experimental hysteresis in memristor based Duffing oscillator
,”
Chaos, Solitons Fractals
115
,
190
195
(
2018
).
25.
J. S. A.
Eyebe Fouda
, “Applicability of ordinal-array-based indicators to strange nonchaotic attractors,” Ph.D. thesis, Universität Kassel, 2017.
You do not currently have access to this content.