It is well-known that interactions between species determine the population composition in an ecosystem. Conventional studies have focused on fixed population structures to reveal how interactions shape population compositions. However, interaction structures are not fixed but change over time due to invasions. Thus, invasion and interaction play an important role in shaping communities. Despite its importance, however, the interplay between invasion and interaction has not been well explored. Here, we investigate how invasion affects the population composition with interactions in open evolving ecological systems considering generalized Lotka–Volterra-type dynamics. Our results show that the system has two distinct regimes. One is characterized by low diversity with abrupt changes of dominant species in time, appearing when the interaction between species is strong and invasion slowly occurs. On the other hand, frequent invasions can induce higher diversity with slow changes in abundances despite strong interactions. It is because invasion happens before the system reaches its equilibrium, which drags the system from its equilibrium all the time. All species have similar abundances in this regime, which implies that fast invasion induces regime shift. Therefore, whether invasion or interaction dominates determines the population composition.

1.
A. J.
Lotka
, “
Analytical note on certain rhythmic relations in organic systems
,”
Proc. Natl. Acad. Sci. U.S.A.
6
,
410
415
(
1920
).
2.
V.
Volterra
, “
Variations and fluctuations of the number of individuals in animal species living together
,”
ICES J. Mar. Sci.
3
,
3
51
(
1928
).
3.
C.
Xue
and
N.
Goldenfeld
, “
Coevolution maintains diversity in the stochastic “kill the winner” model
,”
Phys. Rev. Lett.
119
,
268101
(
2017
).
4.
F.
Farahpour
,
M.
Saeedghalati
,
V. S.
Brauer
, and
D.
Hoffmann
, “
Trade-off shapes diversity in eco-evolutionary dynamics
,”
eLife
7
,
e36273
(
2018
).
5.
L.
Sidhom
and
T.
Galla
, “
Ecological communities from random generalized Lotka-Volterra dynamics with nonlinear feedback
,”
Phys. Rev. E
101
,
032101
(
2020
).
6.
S.
Jain
and
S.
Krishna
, “
Large extinctions in an evolutionary model: The role of innovation and keystone species
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
2055
2060
(
2002
).
7.
J.
Mathiesen
,
N.
Mitarai
,
K.
Sneppen
, and
A.
Trusina
, “
Ecosystems with mutually exclusive interactions self-organize to a state of high diversity
,”
Phys. Rev. Lett.
107
,
188101
(
2011
).
8.
T.
Shimada
, “
A universal transition in the robustness of evolving open systems
,”
Sci. Rep.
4
,
1
7
(
2014
).
9.
H. J.
Park
,
Y.
Pichugin
, and
A.
Traulsen
, “
Why is cyclic dominance so rare?
,”
eLife
9
,
e57857
(
2020
).
10.
S.
Sahney
,
M. J.
Benton
, and
P. A.
Ferry
, “
Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land
,”
Biol. Lett.
6
,
544
547
(
2010
).
11.
S.
Allesina
and
S.
Tang
, “
Stability criteria for complex ecosystems
,”
Nature
483
,
205
208
(
2012
).
12.
A.
Goyal
and
S.
Maslov
, “
Diversity, stability, and reproducibility in stochastically assembled microbial ecosystems
,”
Phys. Rev. Lett.
120
,
158102
(
2018
).
13.
Y.-H.
Lin
and
J. S.
Weitz
, “
Spatial interactions and oscillatory tragedies of the commons
,”
Phys. Rev. Lett.
122
,
148102
(
2019
).
14.
S.
Pettersson
,
V. M.
Savage
, and
M.
Nilsson Jacobi
, “
Predicting collapse of complex ecological systems: Quantifying the stability–complexity continuum
,”
J. Roy. Soc. Interface
17
,
20190391
(
2020
).
15.
S.
Pettersson
,
V. M.
Savage
, and
M. N.
Jacobi
, “
Stability of ecosystems enhanced by species-interaction constraints
,”
Phys. Rev. E
102
,
062405
(
2020
).
16.
G.
Bunin
, “
Ecological communities with Lotka-Volterra dynamics
,”
Phys. Rev. E
95
,
042414
(
2017
).
17.
J. I.
Park
,
B. J.
Kim
, and
H. J.
Park
, “
Stochastic resonance of abundance fluctuations and mean time to extinction in an ecological community
,”
Phys. Rev. E
104
,
024133
(
2021
).
18.
P. J.
Taylor
, “
Consistent scaling and parameter choice for linear and generalized Lotka-Volterra models used in community ecology
,”
J. Theor. Biol.
135
,
543
568
(
1988
).
19.
P. J.
Taylor
, “
The construction and turnover of complex community models having generalized Lotka-Volterra dynamics
,”
J. Theor. Biol.
135
,
569
588
(
1988
).
20.
T.
Shimada
,
S.
Yukawa
, and
N.
Ito
, “
Self-organization in an ecosystem
,”
Artif. Life Robot.
6
,
78
81
(
2002
).
21.
K.
Tokita
and
A.
Yasutomi
, “
Emergence of a complex and stable network in a model ecosystem with extinction and mutation
,”
Theoret. Popul. Biol.
63
,
131
146
(
2003
).
22.
E. G.
Pringle
, “
Orienting the interaction compass: Resource availability as a major driver of context dependence
,”
PLoS Biol.
14
,
e2000891
(
2016
).
23.
F.
Ogushi
,
J.
Kertész
,
K.
Kaski
, and
T.
Shimada
, “
Enhanced robustness of evolving open systems by the bidirectionality of interactions between elements
,”
Sci. Rep.
7
,
1
13
(
2017
).
24.
C.
Schöb
,
R. W.
Brooker
, and
D.
Zuppinger-Dingley
, “
Evolution of facilitation requires diverse communities
,”
Nat. Ecol. Evol.
2
,
1381
1385
(
2018
).
25.
G.
Losapio
,
C.
Schöb
,
P. P.
Staniczenko
,
F.
Carrara
,
G. M.
Palamara
,
C. M.
De Moraes
,
M. C.
Mescher
,
R. W.
Brooker
,
B. J.
Butterfield
,
R. M.
Callaway
et al., “
Network motifs involving both competition and facilitation predict biodiversity in alpine plant communities
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
410
415
(
2021
).
26.
Y.
Park
,
M. J.
Lee
, and
S.-W.
Son
, “
Motif dynamics in signed directional complex networks
,”
J. Korean Phys. Soc.
78
,
535
(
2021
).
27.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
28.
Y.
Park
(
2023
). “
Open evolving ecological model (0.1.0)
,”
Zenodo
.

Supplementary Material

You do not currently have access to this content.