The optimization of synchronization on distributed power grids is an important topic in recent years. We extensively study the optimization by restructuring grid topology in terms of connection rewirings. Due to the node-link dual property of power networks, i.e., the intrinsic generator-load dynamics of nodes and the multiple-attribute connections, we propose the frequency-correlation-optimization scheme to get grid topology with the largest anti-correlation by targeting the frequency-correlation function among nodes. The topology optimizations on both sparse and dense networks are successfully realized. The optimized topology exhibits more generator–consumer connections, indicating that a decentralization of the distribution of generator nodes on power grids favors synchronizability. The benefits of these frequency-correlation-optimized power grids to synchrony are verified. By comparing with the phase-coherence-optimization scheme that favors both the optimal topology and efficient synchronizability, we show that the frequency-correlation optimization and the phase-coherence optimization of power grids are usually compatible, while the former is more efficient and simpler in avoiding tedious simulations of high-dimensional nonlinear dynamics. Our explorations may shed light on the predesign and construction of modern distributed power grids, which are composed of decentralized miscellaneous power sources.

1.
P.
Kundur
,
Power System Stability and Control
(
McGraw-Hill
,
New York
,
1994
).
2.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
Cambridge
,
2001
).
3.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
Cambridge
,
2002
).
4.
Z.
Zheng
,
An Introduction to Emergence Dynamics in Complex Systems
(
Springer Singapore
,
Singapore
,
2021
).
5.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer-Verlag
,
1984
).
6.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
,
Phys. Rep.
469
,
93
(
2008
).
7.
F.
Dörfler
and
F.
Bullo
,
Automatica
50
,
1539
(
2014
).
8.
D.
Witthaut
,
F.
Hellmann
,
J.
Kurths
,
S.
Kettemann
,
H.
Meyer-Ortmanns
, and
M.
Timme
,
Rev. Mod. Phys.
94
,
015005
(
2022
).
10.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J. P.
Vicente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
).
11.
F. A.
Rodrigues
,
T. K. D.
Peron
,
P.
Ji
, and
J.
Kurths
,
Phys. Rep.
610
,
1
(
2016
).
12.
E.
Ott
and
T. M.
Antonsen
,
Chaos
18
,
037113
(
2008
).
13.
S.
Watanabe
and
S. H.
Strogatz
,
Phys. Rev. Lett.
70
,
2391
(
1993
).
14.
R.
Mirollo
and
S. H.
Strogatz
,
Physica D
205
,
249
(
2005
).
15.
R.
Cestnik
and
A.
Pikovsky
,
Phys. Rev. Lett.
128
,
054101
(
2022
).
16.
H.-A.
Tanaka
,
A. J.
Lichtenberg
, and
S.
Oishi
,
Phys. Rev. Lett.
78
,
2104
(
1997
).
17.
H.-A.
Tanaka
,
A. J.
Lichtenberg
, and
S.
Oishi
,
Physica D
100
,
279
(
1997
).
18.
B.
Ermentrout
,
J. Math. Biol.
29
,
571
(
1991
).
19.
S.
Watanabe
and
S. H.
Strogatz
,
Physica D
74
,
197
(
1994
).
20.
B. R.
Trees
,
V.
Saranathan
, and
D. G.
Stroud
,
Phys. Rev. E
71
,
016215
(
2005
).
21.
Y.
Ikeda
,
H.
Aoyama
,
Y.
Fujiwara
,
H.
Iyetomi
,
K.
Ogimoto
,
W.
Souma
, and
H.
Yoshikawa
,
Prog. Theor. Phys. Suppl.
194
,
111
(
2011
).
22.
E.
Sakyte
and
M.
Ragulskis
,
Neurocomputing
74
,
3912
(
2011
).
23.
C.
Bick
,
M.
Goodfellow
,
C. R.
Laing
, and
E. A.
Martens
,
J. Math. Neurosci.
10
,
268
(
2020
).
24.
J.
Gao
and
K.
Efstathiou
,
Phys. Rev. E
98
,
042201
(
2018
).
25.
J.
Gao
and
K.
Efstathiou
,
Chaos
31
,
093137
(
2021
).
26.
G.
Filatrella
,
A. H.
Nielsen
, and
N. F.
Pedersen
,
Eur. Phys. J. B
61
,
485
(
2008
).
27.
P. J.
Menck
,
J.
Heitzig
,
N.
Marwan
, and
J.
Kurths
,
Nat. Phys.
9
,
89
(
2013
).
28.
P.
Ji
and
J.
Kurths
,
Eur. Phys. J. ST
223
,
2483
(
2014
).
29.
C.
Mitra
,
A.
Choudhary
,
S.
Sinha
,
J.
Kurths
, and
R. V.
Donner
,
Phys. Rev. E
95
,
032317
(
2017
).
30.
P.
Schultz
,
P. J.
Menck
,
J.
Heitzig
, and
J.
Kurths
,
New J. Phys.
19
,
023005
(
2017
).
31.
P.
Ji
,
W.
Lu
, and
J.
Kurths
,
EPL
122
,
40003
(
2018
).
32.
Y.
Feld
and
A. K.
Hartmann
,
Chaos
29
,
113103
(
2019
).
33.
S.
Lozano
,
L.
Buzna
, and
A.
Díaz-Guilera
,
Eur. Phys. J. B
85
,
1
(
2012
).
34.
A. E.
Motter
,
S. A.
Myers
,
M.
Anghel
, and
T.
Nishikawa
,
Nat. Phys.
9
,
191
(
2013
).
35.
F.
Molnar
,
T.
Nishikawa
, and
A. E.
Motter
,
Nat. Commun.
12
,
1
(
2021
).
36.
P. J.
Menck
,
J.
Heitzig
,
J.
Kurths
, and
H.
Joachim Schellnhuber
,
Nat. Commun.
5
,
1
(
2014
).
37.
M.
Rohden
,
A.
Sorge
,
M.
Timme
, and
D.
Witthaut
,
Phys. Rev. Lett.
109
,
064101
(
2012
).
38.
M.
Rohden
,
A.
Sorge
,
D.
Witthaut
, and
M.
Timme
,
Chaos
24
,
013123
(
2014
).
39.
T.
Nesti
,
A.
Zocca
, and
B.
Zwart
,
Phys. Rev. Lett.
120
,
258301
(
2018
).
41.
R.
Carareto
,
F.
Orsatti
, and
J.
Piqueira
,
Commun. Nonlinear Sci. Numerical Simul.
14
,
2536
(
2009
).
42.
D.
Kelly
and
G. A.
Gottwald
,
Chaos
21
,
025110
(
2011
).
43.
P. S.
Skardal
,
J.
Sun
,
D.
Taylor
, and
J. G.
Restrepo
,
EPL
101
,
20001
(
2013
).
44.
P. S.
Skardal
,
D.
Taylor
, and
J.
Sun
,
Phys. Rev. Lett.
113
,
144101
(
2014
).
45.
R. S.
Pinto
and
A.
Saa
,
Phys. Rev. E
92
,
062801
(
2015
).
46.
M.
Brede
,
M.
Stella
, and
A. C.
Kalloniatis
,
Sci. Rep.
8
,
1
(
2018
).
47.
C.
Xu
,
J.
Gao
,
S.
Boccaletti
,
Z.
Zheng
, and
S.
Guan
,
Phys. Rev. E
100
,
012212
(
2019
).
48.
W.
Chen
,
J.
Gao
,
Y.
Lan
, and
J.
Xiao
,
Phys. Rev. E
105
,
044302
(
2022
).
49.
Y.
Wu
,
J.
Xiao
,
G.
Hu
, and
M.
Zhan
,
EPL
97
,
40005
(
2012
).
50.
X.
Huang
,
M.
Zhan
,
F.
Li
, and
Z.
Zheng
,
J. Phys. A
47
,
125101
(
2014
).
51.
L.
Chen
,
P.
Ji
,
D.
Waxman
,
W.
Lin
, and
J.
Kurths
,
Chaos
29
,
083131
(
2019
).
52.
H.
Taher
,
S.
Olmi
, and
E.
Schöll
,
Phys. Rev. E
100
,
062306
(
2019
).
53.
L.
Yang
,
J.
Jiang
, and
X.
Liu
,
Chaos, Solitons Fractals
126
,
60
(
2019
).
54.
B.
Li
and
K. M.
Wong
,
Phys. Rev. E
95
,
012207
(
2017
).
55.
56.
R.
Carareto
,
M. S.
Baptista
, and
C.
Grebogi
,
Commun. Nonlinear Sci. Numer. Simul.
18
,
1035
(
2013
).
57.
R. S.
Pinto
and
A.
Saa
,
Physica A
463
,
77
(
2016
).
58.
L.
Papadopoulos
,
J. Z.
Kim
,
J.
Kurths
, and
D. S.
Bassett
,
Chaos
27
,
073115
(
2017
).
You do not currently have access to this content.