In this paper, we investigate the complex dynamics of rotating pendula arranged into a simple mechanical scheme. Three nodes forming the small network are coupled via the horizontally oscillating beam (the global coupling structure) and the springs (the local coupling), which extends the research performed previously for similar models. The pendula rotate in different directions, and depending on the distribution of the latter ones, various types of behaviors of the system can be observed. We determine the regions of the existence and co-existence of particular solutions using both the classical method of bifurcations, as well as a modern sample-based approach based on the concept of basin stability. Various types of states are presented and discussed, including synchronization patterns, coherent dynamics, and irregular motion. We uncover new schemes of solutions, showing that both rotations and oscillations can co-exist for various pendula, arranged within one common system. Our analysis includes the investigations of the basins of attraction of different dynamical patterns, as well as the study on the properties of the observed states, along with the examination of the influence of system’s parameters on their behavior. We show that the model can respond in spontaneous ways and uncover unpredicted irregularities occurring for the states. Our study exhibits that the inclusion of the local coupling structure can induce complex, chimeric dynamics of the system, leading to new co-existing patterns for coupled mechanical nodes.

1.
E.
Kramer
,
Dynamics of Rotors and Foundations
(
Springer
,
Berlin
,
1993
).
2.
O.
Mahrenholtz
,
Dynamics of Rotors: Stability and System Identification
(
Springer
,
Vienna
,
1984
).
3.
V. V.
Smirnov
,
Revolution of Pendula: Rotational Dynamics of the Coupled Pendula
(
Springer International Publishing
,
2019
), pp.
141
156
.
4.
J.
Warmiński
,
Z.
Szmit
, and
J.
Latalski
, “
Nonlinear dynamics and synchronisation of pendula attached to a rotating hub
,”
Eur. Phys. J.: Spec. Top.
223
(
4
),
827
(
2014
).
5.
J.
Strzałko
,
J.
Grabski
,
J.
Wojewoda
,
M.
Wiercigroch
, and
T.
Kapitaniak
, “
Synchronous rotation of the set of double pendula: Experimental observations
,”
Chaos
22
(
4
),
047503
(
2012
).
6.
P.
Koluda
,
P.
Brzeski
, and
P.
Perlikowski
, “
Dynamics of n coupled double pendula suspended to the moving beam
,”
Int. J. Struct. Stab.
14
(
08
),
1440028
(
2014
).
7.
B.
Witkowski
,
P.
Perlikowski
,
A.
Prasad
, and
T.
Kapitaniak
, “
The dynamics of co- and counter rotating coupled spherical pendula
,”
Eur. Phys. J.: Spec. Top.
223
(
4
),
707
(
2014
).
8.
Y.
Hou
and
P.
Fang
, “
Investigation for synchronization of a rotor-pendulum system considering the multi-DOF vibration
,”
Shock Vib.
2016
,
8641754
.
9.
M.
Kapitaniak
,
K.
Czołczyński
,
P.
Perlikowski
,
A.
Stefański
, and
T.
Kapitaniak
, “
Synchronous states of slowly rotating pendula
,”
Phys. Rep.
541
(
1
),
1
(
2014
).
10.
M.
Lazarek
,
M.
Niełaczny
,
K.
Czołczyński
, and
T.
Kapitaniak
, “
Synchronization of slowly rotating nonidentically driven pendula
,”
J. Comput. Nonlinear Dyn.
9
(
2
),
021010
(
2013
).
11.
P.
Fang
,
Y.
Hou
,
L.
Dai
, and
M.
Du
, “
Theoretical study of synchronous behavior in a dual-pendulum-rotor system
,”
Shock Vib.
2018
,
9824631
.
12.
R.
Jain
,
J.
Sharma
,
I.
Tiwari
,
S. D.
Gadre
,
S.
Kumarasamy
,
P.
Parmananda
, and
A.
Prasad
, “
Generation of aperiodic motion due to sporadic collisions of camphor ribbons
,”
Phys. Rev. E
106
,
024201
(
2022
).
13.
Y.
Jinnouchi
,
Y.
Araki
,
J.
Inoue
, and
S.
Kubo
, “
Dynamic instability of a high-speed rotor containing a partitioned cavity filled with two kinds of liquids
,”
J. Press. Vessel Technol.
111
(
4
),
450
(
1989
).
14.
P.
Fang
,
Y.
Hou
, and
M.
Du
, “
Synchronization behavior of triple-rotor-pendula system in a dual-super-far resonance system
,”
Proc. Inst. Mech. Eng., Part C
233
(
5
),
1620
(
2019
).
15.
P.
Fang
and
Y.
Hou
, “
Synchronization characteristics of a rotor-pendula system in multiple coupling resonant systems
,”
Proc. Inst. Mech. Eng., Part C
232
(
10
),
1802
(
2018
).
16.
P.
Fang
,
Y.
Hou
,
Y.
Nan
, and
L.
Yu
, “
Study of synchronization for a rotor-pendulum system with Poincaré method
,”
J. Vibroeng.
17
(
5
),
2681
(
2015
).
17.
E. R.
Gomez
,
I. L.
Arteaga
, and
L.
Kari
, “
Normal-force dependant friction in centrifugal pendulum vibration absorbers: Simulation and experimental investigations
,”
J. Sound Vib.
492
,
115815
(
2021
).
18.
V.
Vaziri
,
A.
Najdecka
, and
M.
Wiercigroch
, “
Experimental control for initiating and maintaining rotation of parametric pendulum
,”
Eur. Phys. J.: Spec. Top.
223
(
4
),
795
(
2014
).
19.
D.
Dudkowski
,
J.
Grabski
,
J.
Wojewoda
,
P.
Perlikowski
,
Y.
Maistrenko
, and
T.
Kapitaniak
, “
Experimental multistable states for small network of coupled pendula
,”
Sci. Rep.
6
(
1
),
29833
(
2016
).
20.
A. Y.
Pogromsky
,
V.
Belykh
, and
H.
Nijmeijer
,
A Study of Controlled Synchronization of Huijgens’ Pendula
(
Springer
,
Berlin
,
2006
), pp.
205
216
.
21.
M.
Kapitaniak
,
K.
Czołczyński
,
P.
Perlikowski
,
A.
Stefański
, and
T.
Kapitaniak
, “
Synchronization of clocks
,”
Phys. Rep.
517
(
1–2
),
1
(
2012
).
22.
A.
Stefański
,
P.
Perlikowski
, and
T.
Kapitaniak
, “
Ragged synchronizability of coupled oscillators
,”
Phys. Rev. E
75
,
016210
(
2007
).
23.
P.
Brzeski
,
P.
Perlikowski
,
S.
Yanchuk
, and
T.
Kapitaniak
, “
The dynamics of the pendulum suspended on the forced Duffing oscillator
,”
J. Sound Vib.
331
(
24
),
5347
(
2012
).
24.
T.
Kapitaniak
,
P.
Kuźma
,
J.
Wojewoda
,
K.
Czołczyński
, and
Y.
Maistrenko
, “
Imperfect chimera states for coupled pendula
,”
Sci. Rep.
4
(
1
),
6379
(
2014
).
25.
P.
Ebrahimzadeh
,
M.
Schiek
, and
Y.
Maistrenko
, “
Mixed-mode chimera states in pendula networks
,”
Chaos
32
(
10
),
103118
(
2022
).
26.
M.
Marszal
,
B.
Witkowski
,
K.
Jankowski
,
P.
Perlikowski
, and
T.
Kapitaniak
, “
Energy harvesting from pendulum oscillations
,”
Int. J. Non-Linear Mech.
94
,
251
(
2017
).
27.
A.
Najdecka
, “
Rotating dynamics of pendula systems for energy harvesting from ambient vibrations
,” Ph.D. thesis (
University of Aberdeen
,
2013
).
28.
M.
Leszczynski
,
P.
Perlikowski
,
T.
Burzynski
,
T. M.
Kowalski
, and
P.
Brzeski
, “
Review of sample-based methods used in an analysis of multistable dynamical systems
,”
Chaos
32
(
8
),
082101
(
2022
).
29.
K.
Czołczyński
,
P.
Perlikowski
,
A.
Stefański
, and
T.
Kapitaniak
, “
Synchronization of pendula rotating in different directions
,”
Commun. Nonlinear Sci. Numer. Simul.
17
(
9
),
3658
(
2012
).
30.
D. M.
Abrams
and
S. H.
Strogatz
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
,
174102
(
2004
).
31.
J.
Hizanidis
,
N. E.
Kouvaris
,
G.
Zamora-Lopez
,
A.
Diaz-Guilera
, and
C. G.
Antonopoulos
, “
Chimera-like states in modular neural networks
,”
Sci. Rep.
6
(
1
),
19845
(
2016
).
32.
S.
Nkomo
,
M. R.
Tinsley
, and
K.
Showalter
, “
Chimera and chimera-like states in populations of nonlocally coupled homogeneous and heterogeneous chemical oscillators
,”
Chaos
26
(
9
),
094826
(
2016
).
33.
V. N.
Chizhevsky
, “
Multistability in dynamical systems induced by weak periodic perturbations
,”
Phys. Rev. E
64
,
036223
(
2001
).
34.
C. R.
Hens
,
R.
Banerjee
,
U.
Feudel
, and
S. K.
Dana
, “
How to obtain extreme multistability in coupled dynamical systems
,”
Phys. Rev. E
85
,
035202
(
2012
).
35.
C.
Mitra
,
J.
Kurths
, and
R. V.
Donner
, “
An integrative quantifier of multistability in complex systems based on ecological resilience
,”
Sci. Rep.
5
(
1
),
16196
(
2015
).
36.
D.
Dudkowski
,
S.
Jafari
,
T.
Kapitaniak
,
N. V.
Kuznetsov
,
G. A.
Leonov
, and
A.
Prasad
, “
Hidden attractors in dynamical systems
,”
Phys. Rep.
637
,
1
(
2016
).
37.
A. N.
Pisarchik
and
U.
Feudel
, “
Control of multistability
,”
Phys. Rep.
540
(
4
),
167
(
2014
).
38.
P.
Brzeski
,
J.
Wojewoda
,
T.
Kapitaniak
,
J.
Kurths
, and
P.
Perlikowski
, “
Sample-based approach can outperform the classical dynamical analysis—Experimental confirmation of the basin stability method
,”
Sci. Rep.
7
(
1
),
6121
(
2017
).
39.
P. J.
Menck
,
J.
Heitzig
,
N.
Marwan
, and
J.
Kurths
, “
How basin stability complements the linear-stability paradigm
,”
Nat. Phys.
9
(
2
),
89
(
2013
).
40.
S.
Rakshit
,
B. K.
Bera
,
S.
Majhi
,
C.
Hens
, and
D.
Ghosh
, “
Basin stability measure of different steady states in coupled oscillators
,”
Sci. Rep.
7
(
1
),
45909
(
2017
).
41.
P.
Schultz
,
J.
Heitzig
, and
J.
Kurths
, “
Detours around basin stability in power networks
,”
New J. Phys.
16
(
12
),
125001
(
2014
).
42.
S.
Rakshit
,
B. K.
Bera
,
M.
Perc
, and
D.
Ghosh
, “
Basin stability for chimera states
,”
Sci. Rep.
7
(
1
),
2412
(
2017
).
You do not currently have access to this content.