A primary spectral submanifold (SSM) is the unique smoothest nonlinear continuation of a nonresonant spectral subspace E of a dynamical system linearized at a fixed point. Passing from the full nonlinear dynamics to the flow on an attracting primary SSM provides a mathematically precise reduction of the full system dynamics to a very low-dimensional, smooth model in polynomial form. A limitation of this model reduction approach has been, however, that the spectral subspace yielding the SSM must be spanned by eigenvectors of the same stability type. A further limitation has been that in some problems, the nonlinear behavior of interest may be far away from the smoothest nonlinear continuation of the invariant subspace E. Here, we remove both of these limitations by constructing a significantly extended class of SSMs that also contains invariant manifolds with mixed internal stability types and of lower smoothness class arising from fractional powers in their parametrization. We show on examples how fractional and mixed-mode SSMs extend the power of data-driven SSM reduction to transitions in shear flows, dynamic buckling of beams, and periodically forced nonlinear oscillatory systems. More generally, our results reveal the general function library that should be used beyond integer-powered polynomials in fitting nonlinear reduced-order models to data.

1.
D.
Amsallem
,
C.
Farhat
, and
B.
Haasdonk
, “
Special issue on model reduction
,”
Int. J. Numer. Methods Eng.
102
(
5
),
931
932
(
2015
).
2.
T.
Leliévre
,
S.
Perotto
,
G.
Rozza
,
D. A.
Di Pietro
,
A.
Ern
, and
L.
Formaggia
, “
Preface: Special issue on model reduction
,”
J. Sci. Comput.
81
,
1
2
(
2019
).
3.
A.
Ghadami
and
B. I.
Epureanu
, “
Data-driven prediction in dynamical systems: Recent developments
,”
Philos. Trans. R. Soc., A
380
(
2229
),
20210213
(
2022
).
4.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci.
113
(
15
),
3932
3937
(
2016
).
5.
D.
Hartman
and
L. K.
Mestha
, “A deep learning framework for model reduction of dynamical systems,” in 2017 IEEE Conference on Control Technology and Applications (CCTA) (IEEE, 2017), pp. 1917–1922.
6.
K. S.
Mohamed
,
Machine Learning for Model Order Reduction
(
Springer
,
2018
).
7.
T.
Daniel
,
F.
Casenave
,
N.
Akkari
, and
D.
Ryckelynck
, “
Model order reduction assisted by deep neural networks (ROM-net)
,”
Adv. Model. Simul. Eng. Sci.
7
,
105786
(
2020
).
8.
M.
Calka
,
P.
Perrier
,
J.
Ohayon
,
C.
Grivot-Boichon
,
M.
Rochette
, and
Y.
Payan
, “
Machine-learning based model order reduction of a biomechanical model of the human tongue
,”
Comput. Methods Prog. Biomed.
198
,
105786
(
2021
).
9.
J.-C.
Loiseau
,
S. L.
Brunton
, and
B. R.
Noack
,
From the POD-Galerkin Method to Sparse Manifold Models
(
De Gruyter
,
Berlin
,
2020
), pp. 279–320.
10.
G. E.
Karniadakis
,
I. G.
Kevrekidis
,
L.
Lu
,
P.
Perdikaris
,
S.
Wang
, and
L.
Yang
, “
Physics-informed machine learning
,”
Nat. Rev. Phys.
123
,
422
440
(
2021
).
11.
P. J.
Schmid
, “
Dynamic mode decomposition and its variants
,”
Annu. Rev. Fluid Mech.
54
,
225
254
(
2022
).
12.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
13.
I. G.
Williams
,
M. O.
Kevrekidis
, and
C. W.
Rowley
, “
A data–driven approximation of the Koopman operator: Extending dynamic mode decomposition
,”
J. Nonlinear Sci.
9
,
1307
1346
(
2015
).
14.
C. W.
Rowley
,
I.
Mezić
,
S.
Bagheri
,
P.
Schlachter
, and
D. S.
Henningson
, “
Spectral analysis of nonlinear flows
,”
J. Fluid Mech.
641
,
115
127
(
2009
).
15.
M.
Budišić
,
R.
Mohr
, and
I.
Mezić
, “
Applied Koopmanism
,”
Chaos
22
,
047510
(
2012
).
16.
A.
Mauroy
,
I.
Mezić
, and
Y.
Susuki
,
The Koopman Operator in Systems and Control Concepts, Methodologies, and Applications: Concepts, Methodologies, and Applications
(
Springer
,
New York
,
2020
).
17.
M.
Avila
,
D.
Barkley
, and
B.
Hof
, “
Transition to turbulence in pipe flow
,”
Annu. Rev. Fluid Mech.
55
(
1
),
575
602
(
2023
).
18.
T. M.
Lenton
,
H.
Held
,
E.
Kriegler
, and
H. J.
Schnellhuber
, “
Tipping elements in the Earth’s climate system
,”
Proc. Natl. Acad. Sci.
105
(
6
),
1786
1793
(
2008
).
19.
M.
Cenedese
,
J.
Axås
,
B.
Bäuerlein
,
K.
Avila
, and
G.
Haller
, “
Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds
,”
Nat. Commun.
13
,
198
(
2022
).
20.
S. L.
Brunton
,
B. W.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control
,”
PLoS One
11
,
1
19
(
2016
).
21.
D.
Floryan
and
M. D.
Graham
, “
Data-driven discovery of intrinsic dynamics
,”
Nat. Mach. Intell.
4
(
12
),
1113
1120
(
2022
).
22.
E.
Farzamnik
,
A.
Ianiro
,
S.
Discetti
,
N.
Deng
,
K.
Oberleithner
,
B. R.
Noack
, and
V.
Guerrero
, “
From snapshots to manifolds—A tale of shear flows
,”
J. Fluid Mech.
955
,
A34
(
2023
).
23.
G.
Haller
and
S.
Ponsioen
, “
Nonlinear normal modes and spectral submanifolds: Existence, uniqueness and use in model reduction
,”
Nonlinear Dyn.
86
(
3
),
1493
1534
(
2016
).
24.
S. W.
Shaw
and
C.
Pierre
, “
Normal modes for non-linear vibratory systems
,”
J. Sound Vib.
164
(
1
),
85
124
(
1993
).
25.
X.
Cabré
,
E.
Fontich
, and
R.
de la Llave
, “
The parameterization method for invariant manifolds I: Manifolds associated to non-resonant subspaces
,”
Indiana Univ. Math. J.
52
(
2
),
283
328
(
2003
).
26.
S.
Jain
and
G.
Haller
, “
How to compute invariant manifolds and their reduced dynamics in high-dimensional finite-element models?
,”
Nonlinear Dyn.
107
,
1417
1450
(
2022
).
27.
J.
Axås
,
M.
Cenedese
, and
G.
Haller
, “
Fast data-driven model reduction for nonlinear dynamical systems
,”
Nonlinear Dyn.
111
,
7941
7957
(
2023
).
28.
M.
Cenedese
and
G.
Haller
, “
Stability of forced-damped response in mechanical systems from a Melnikov analysis
,”
Chaos
30
,
083103
(
2020
).
29.
J. I.
Alora
,
M.
Cenedese
,
E.
Schmerling
,
G.
Haller
, and
M.
Pavone
, “Data-driven spectral submanifold reduction for nonlinear optimal control of high-dimensional robots,” in Proceedings of IEEE International Conference on Robotics and Automation (ICRA), London, arXiv:2209.0571 (2023).
30.
B.
Kaszás
,
M.
Cenedese
, and
G.
Haller
, “
Dynamics-based machine learning of transitions in Couette flow
,”
Phys. Rev. Fluids
7
,
L082402
(
2022
).
31.
M.
Cenedese
and
G.
Haller
, “
How do conservative backbone curves perturb into forced responses? A Melnikov function analysis
,”
Proc. R. Soc. A
476
,
20190494
(
2020
).
32.
B.
Hof
,
C. W. H.
van Doorne
,
J.
Westerweel
,
F. T. M.
Nieuwstadt
,
H.
Faisst
,
B.
Eckhardt
,
H.
Wedin
,
R. R.
Kerswell
, and
F.
Waleffe
, “
Experimental observation of nonlinear traveling waves in turbulent pipe flow
,”
Science
305
(
5690
),
1594
1598
(
2004
).
33.
M. D.
Graham
and
D.
Floryan
, “
Exact coherent states and the nonlinear dynamics of wall-bounded turbulent flows
,”
Annu. Rev. Fluid. Mech
53
(
1
),
227
253
(
2021
).
34.
H.
Abramovich
,
Stability and Vibrations of Thin Walled Composite Structures
(
Elesevier
,
Amsterdam
,
2018
).
35.
R.
Krechetnikov
and
J. E.
Marsden
, “
Dissipation-induced instabilities in finite dimensions
,”
Rev. Mod. Phys.
79
,
519
553
(
2007
).
36.
B.
Li
,
N.
Madras
, and
A. D.
Sokal
, “
Critical exponents, hyperscaling, and universal amplitude ratios for two- and three-dimensional self-avoiding walks
,”
J. Stat. Phys.
80
,
661
754
(
1995
).
37.
R.
de la Llave
, “
Invariant manifolds associated to nonresonant spectral subspaces
,”
J. Stat. Phys.
87
,
211
249
(
1997
).
38.
J.
Page
and
R. R.
Kerswell
, “
Koopman mode expansions between simple invariant solutions
,”
J. Fluid Mech.
879
,
1
27
(
2019
).
39.
J. D.
Skufca
,
J. A.
Yorke
, and
B.
Eckhardt
, “
Edge of chaos in a parallel shear flow
,”
Phys. Rev. Lett.
96
,
174101
(
2006
).
40.
R.
de la Llave
and
C. E.
Wayne
, “
On Irwin’s proof of the pseudostable manifold theorem
,”
Math. Z.
219
(
4
),
301
321
(
1995
).
41.
M.
Cenedese
,
J.
Axås
, and
G.
Haller
, see https://github.com/haller-group/SSMLearn for SSMLearn, 2021.
42.
S.
Sternberg
, “
On the structure of local homeomorphisms of Euclidean n-space, II
,”
Am. J. Math.
80
(
3
),
623
631
(
1958
).
43.
M.
Li
,
S.
Jain
, and
G.
Haller
, “
Nonlinear analysis of forced mechanical systems with internal resonance using spectral submanifolds, Part I: Periodic response and forced response curve
,”
Nonlinear Dyn.
110
,
1005
1043
(
2022
).
44.
M.
Li
,
S.
Jain
, and
G.
Haller
, “
Nonlinear analysis of forced mechanical systems with internal resonance using spectral submanifolds, Part II: Bifurcation and quasi-periodic response
,”
Nonlinear Dyn.
110
,
1045
1080
(
2022
).
45.
M. D.
Kvalheim
and
S.
Revzen
, “
Existence and uniqueness of global Koopman eigenfunctions for stable fixed points and periodic orbits
,”
Physica D
425
,
132959
(
2021
).
46.
M.
Cenedese
,
J.
Axås
,
H.
Yang
,
M.
Eriten
, and
G.
Haller
, “
Data-driven nonlinear model reduction to spectral submanifolds in mechanical systems
,”
Philos. Trans. R. Soc., A
380
,
20210194
(
2022
).
47.
T.
Breunung
and
G.
Haller
, “
Explicit backbone curves from spectral submanifolds of forced-damped nonlinear mechanical systems
,”
Proc. R. Soc. A
474
,
20180083
(
2018
).
48.
S.
Ponsioen
,
S.
Jain
, and
G.
Haller
, “
Model reduction to spectral submanifolds and forced-response calculation in high-dimensional mechanical systems
,”
J. Sound Vib.
488
,
115640
(
2020
).
49.
S.
Ponsioen
,
T.
Pedergnana
, and
G.
Haller
, “
Automated computation of autonomous spectral submanifolds for nonlinear modal analysis
,”
J. Sound Vib.
420
,
269
295
(
2018
).
50.
V. I.
Arnold
,
Geometric Methods in the Theory of Ordinary Differential Equations
(
Springer-Verlag
,
New York
,
1983
).
51.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields
(
Springer
,
New York
,
1983
).
52.
S.
Ponsioen
,
T.
Pedergnana
, and
G.
Haller
, “
Analytic prediction of isolated forced response curves from spectral submanifolds
,”
Nonlinear Dyn.
98
,
2755
2773
(
2019
).
53.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
(
Springer
,
New York
,
2001
).
54.
W.
Rudin
, “Principles of mathematical analysis,” in International Series in Pure and Applied Mathematics, 3rd ed. (McGraw-Hill, New York, 1976).
55.
J. F.
Gibson
,
F.
Reetz
,
S.
Azimi
,
A.
Ferraro
,
T.
Kreilos
,
H.
Schrobsdorff
,
M.
Farano
,
A. F.
Yesil
,
S. S.
Schütz
,
M.
Culpo
, and
T. M.
Schneider
, see https://channelflow.ch for Channelflow 2.0 (2018).
56.
S.
Jain
,
P.
Tiso
, and
G.
Haller
, “
Exact nonlinear model reduction for a von Kármán beam: Slow-fast decomposition and spectral submanifolds
,”
J. Sound Vib.
423
,
195
211
(
2018
).
57.
G.
Sell
, “
Smooth linearization near a fixed point
,”
Am. J. Math.
107
,
1035
1109
(
1985
).
58.
S. M.
Elbialy
, “
Local contractions of Banach spaces and spectral gap conditions
,”
J. Funct. Anal.
182
,
108
150
(
2001
).
59.
S. M.
Elbialy
, “
C k invariant manifolds for maps on Banach spaces
,”
J. Math. Anal. Appl.
268
,
1
24
(
2002
).
60.
G.
Buza
, “Spectral submanifolds of the Navier-Stokes equations,” arXiv:2301.07898 (2023).
61.
M.
Cenedese
, personal communication (2023).
62.
M.
Eriten
, personal communication (2022).
You do not currently have access to this content.