Since Galileo’s time, the pendulum has evolved into one of the most exciting physical objects in mathematical modeling due to its vast range of applications for studying various oscillatory dynamics, including bifurcations and chaos, under various interests. This well-deserved focus aids in comprehending various oscillatory physical phenomena that can be reduced to the equations of the pendulum. The present article focuses on the rotational dynamics of the two-dimensional forced-damped pendulum under the influence of the ac and dc torque. Interestingly, we are able to detect a range of the pendulum’s length for which the angular velocity exhibits a few intermittent extreme rotational events that deviate significantly from a certain well-defined threshold. The statistics of the return intervals between these extreme rotational events are supported by our data to be spread exponentially at a specific pendulum’s length beyond which the external dc and ac torque are no longer sufficient for a full rotation around the pivot. The numerical results show a sudden increase in the size of the chaotic attractor due to interior crisis, which is the source of instability that is responsible for triggering large amplitude events in our system. We also notice the occurrence of phase slips with the appearance of extreme rotational events when the phase difference between the instantaneous phase of the system and the externally applied ac torque is observed.

1.
S.
Nag Chowdhury
,
A.
Ray
,
S. K.
Dana
, and
D.
Ghosh
, “
Extreme events in dynamical systems and random walkers: A review
,”
Phys. Rep.
966
,
1
52
(
2022
).
2.
A.
Mishra
,
S.
Leo Kingston
,
C.
Hens
,
T.
Kapitaniak
,
U.
Feudel
, and
S. K.
Dana
, “
Routes to extreme events in dynamical systems: Dynamical and statistical characteristics
,”
Chaos
30
,
063114
(
2020
).
3.
M.
Farazmand
and
T. P.
Sapsis
, “
Extreme events: Mechanisms and prediction
,”
Appl. Mech. Rev.
71
,
050801
(
2019
).
4.
N.
Boers
,
B.
Bookhagen
,
H. M.
Barbosa
,
N.
Marwan
,
J.
Kurths
, and
J.
Marengo
, “
Prediction of extreme floods in the eastern Central Andes based on a complex networks approach
,”
Nat. Commun.
5
,
5199
(
2014
).
5.
A.
Mascarenhas
, “
Extreme events, intrinsic landforms and humankind: Post-tsunami scenario along Nagore–Velankanni coast, Tamil Nadu, India
,”
Curr. Sci.
90
,
1195
1201
(
2006
).
6.
D.
Sornette
,
L.
Knopoff
,
Y.
Kagan
, and
C.
Vanneste
, “
Rank-ordering statistics of extreme events: Application to the distribution of large earthquakes
,”
J. Geophys. Res.: Solid Earth
101
,
13883
13893
, https://doi.org/10.1029/96JB00177 (
1996
).
7.
A. J.
Dowdy
and
J. L.
Catto
, “
Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences
,”
Sci. Rep.
7
,
40359
(
2017
).
8.
J.
Nott
,
Extreme Events: A Physical Reconstruction and Risk Assessment
(
Cambridge University Press
,
2006
).
9.
D.
Zaccagnino
,
L.
Telesca
, and
C.
Doglioni
, “
Correlation between seismic activity and tidal stress perturbations highlights growing instability within the brittle crust
,”
Sci. Rep.
12
,
7109
(
2022
).
10.
D. F.
Gomez Isaza
,
R. L.
Cramp
, and
C. E.
Franklin
, “
Fire and rain: A systematic review of the impacts of wildfire and associated runoff on aquatic fauna
,”
Global Change Biol.
28
,
2578
2595
(
2022
).
11.
W. A.
Thelen
,
R. S.
Matoza
, and
A. J.
Hotovec-Ellis
, “
Trends in volcano seismology: 2010 to 2020 and beyond
,”
Bull. Volcanol.
84
,
26
(
2022
).
12.
N.
Sharma
,
A.
Acharya
,
I.
Jacob
,
S.
Yamujala
,
V.
Gupta
, and
R.
Bhakar
, “Major blackouts of the decade: Underlying causes, recommendations and arising challenges,” in 2021 9th IEEE International Conference on Power Systems (ICPS) (IEEE, 2021), pp. 1–6.
13.
E.
Cléro
,
E.
Ostroumova
,
C.
Demoury
,
B.
Grosche
,
A.
Kesminiene
,
L.
Liutsko
,
Y.
Motreff
,
D.
Oughton
,
P.
Pirard
,
A.
Rogel
et al., “
Lessons learned from Chernobyl and Fukushima on thyroid cancer screening and recommendations in case of a future nuclear accident
,”
Environ. Int.
146
,
106230
(
2021
).
14.
R.
Biggs
,
S. R.
Carpenter
, and
W. A.
Brock
, “
Turning back from the brink: Detecting an impending regime shift in time to avert it
,”
Proc. Natl. Acad. Sci.
106
,
826
831
(
2009
).
15.
M.
Scheffer
and
S. R.
Carpenter
, “
Catastrophic regime shifts in ecosystems: Linking theory to observation
,”
Trends Ecol. Evol.
18
,
648
656
(
2003
).
16.
C.
Folke
,
S.
Carpenter
,
B.
Walker
,
M.
Scheffer
,
T.
Elmqvist
,
L.
Gunderson
, and
C. S.
Holling
, “
Regime shifts, resilience, and biodiversity in ecosystem management
,”
Annu. Rev. Ecol. Evol. Syst.
35
,
557
581
(
2004
).
17.
S. M.
Krause
,
S.
Börries
, and
S.
Bornholdt
, “
Econophysics of adaptive power markets: When a market does not dampen fluctuations but amplifies them
,”
Phys. Rev. E
92
,
012815
(
2015
).
18.
H. L. D. S.
Cavalcante
,
M.
Oriá
,
D.
Sornette
,
E.
Ott
, and
D. J.
Gauthier
, “
Predictability and suppression of extreme events in a chaotic system
,”
Phys. Rev. Lett.
111
,
198701
(
2013
).
19.
J.
Zamora-Munt
,
C. R.
Mirasso
, and
R.
Toral
, “
Suppression of deterministic and stochastic extreme desynchronization events using anticipated synchronization
,”
Phys. Rev. E
89
,
012921
(
2014
).
20.
P.
Amil
,
M. C.
Soriano
, and
C.
Masoller
, “
Machine learning algorithms for predicting the amplitude of chaotic laser pulses
,”
Chaos
29
,
113111
(
2019
).
21.
J.
Meiyazhagan
,
S.
Sudharsan
, and
M.
Senthilvelan
, “
Model-free prediction of emergence of extreme events in a parametrically driven nonlinear dynamical system by deep learning
,”
Eur. Phys. J. B
94
,
156
(
2021
).
22.
A.
Ray
,
T.
Chakraborty
, and
D.
Ghosh
, “
Optimized ensemble deep learning framework for scalable forecasting of dynamics containing extreme events
,”
Chaos
31
,
111105
(
2021
).
23.
J.
Meiyazhagan
,
S.
Sudharsan
,
A.
Venkatesan
, and
M.
Senthilvelan
, “
Prediction of occurrence of extreme events using machine learning
,”
Eur. Phys. J. Plus
137
,
1
20
(
2022
).
24.
R.
Suresh
and
V.
Chandrasekar
, “
Influence of time-delay feedback on extreme events in a forced Liénard system
,”
Phys. Rev. E
98
,
052211
(
2018
).
25.
A.
Ray
,
S.
Rakshit
,
D.
Ghosh
, and
S. K.
Dana
, “
Intermittent large deviation of chaotic trajectory in ikeda map: Signature of extreme events
,”
Chaos
29
,
043131
(
2019
).
26.
M.
Farazmand
and
T. P.
Sapsis
, “
Closed-loop adaptive control of extreme events in a turbulent flow
,”
Phys. Rev. E
100
,
033110
(
2019
).
27.
S.
Sudharsan
,
A.
Venkatesan
, and
M.
Senthilvelan
, “
Constant bias and weak second periodic forcing: Tools to mitigate extreme events
,”
Eur. Phys. J. Plus
136
,
817
(
2021
).
28.
S.
Nag Chowdhury
,
A.
Ray
,
A.
Mishra
, and
D.
Ghosh
, “
Extreme events in globally coupled chaotic maps
,”
J. Phys.: Complexity
2
,
035021
(
2021
).
29.
G.
Ansmann
,
R.
Karnatak
,
K.
Lehnertz
, and
U.
Feudel
, “
Extreme events in excitable systems and mechanisms of their generation
,”
Phys. Rev. E
88
,
052911
(
2013
).
30.
B.
Kaviya
,
R.
Suresh
,
V.
Chandrasekar
, and
B.
Balachandran
, “
Influence of dissipation on extreme oscillations of a forced anharmonic oscillator
,”
Int. J. Non-Linear Mech.
127
,
103596
(
2020
).
31.
R.
Karnatak
,
G.
Ansmann
,
U.
Feudel
, and
K.
Lehnertz
, “
Route to extreme events in excitable systems
,”
Phys. Rev. E
90
,
022917
(
2014
).
32.
A.
Saha
and
U.
Feudel
, “
Extreme events in Fitzhugh-Nagumo oscillators coupled with two time delays
,”
Phys. Rev. E
95
,
062219
(
2017
).
33.
A.
Saha
and
U.
Feudel
, “
Riddled basins of attraction in systems exhibiting extreme events
,”
Chaos
28
,
033610
(
2018
).
34.
S.
Bialonski
,
G.
Ansmann
, and
H.
Kantz
, “
Data-driven prediction and prevention of extreme events in a spatially extended excitable system
,”
Phys. Rev. E
92
,
042910
(
2015
).
35.
V.
Varshney
,
S.
Kumarasamy
,
A.
Mishra
,
B.
Biswal
, and
A.
Prasad
, “
Traveling of extreme events in network of counter-rotating nonlinear oscillators
,”
Chaos
31
,
093136
(
2021
).
36.
A.
Mishra
,
S.
Saha
,
M.
Vigneshwaran
,
P.
Pal
,
T.
Kapitaniak
, and
S. K.
Dana
, “
Dragon-king-like extreme events in coupled bursting neurons
,”
Phys. Rev. E
97
,
062311
(
2018
).
37.
S. L.
Kingston
,
K.
Thamilmaran
,
P.
Pal
,
U.
Feudel
, and
S. K.
Dana
, “
Extreme events in the forced Liénard system
,”
Phys. Rev. E
96
,
052204
(
2017
).
38.
A.
Ray
,
A.
Mishra
,
D.
Ghosh
,
T.
Kapitaniak
,
S. K.
Dana
, and
C.
Hens
, “
Extreme events in a network of heterogeneous Josephson junctions
,”
Phys. Rev. E
101
,
032209
(
2020
).
39.
J.-W.
Kim
and
E.
Ott
, “
Statistics and characteristics of spatiotemporally rare intense events in complex Ginzburg-Landau models
,”
Phys. Rev. E
67
,
026203
(
2003
).
40.
P.
Galuzio
,
R.
Viana
, and
S.
Lopes
, “
Control of extreme events in the bubbling onset of wave turbulence
,”
Phys. Rev. E
89
,
040901
(
2014
).
41.
S.
Kumarasamy
and
A. N.
Pisarchik
, “
Extreme events in systems with discontinuous boundaries
,”
Phys. Rev. E
98
,
032203
(
2018
).
42.
T.
Bódai
,
G.
Károlyi
, and
T.
Tél
, “
A chaotically driven model climate: Extreme events and snapshot attractors
,”
Nonlinear Processes Geophys.
18
,
573
580
(
2011
).
43.
D.
Sen
and
S.
Sinha
, “
Influence of the allee effect on extreme events in coupled three-species systems
,”
J. Biosci.
47
,
30
(
2022
).
44.
S.
Sudharsan
,
A.
Venkatesan
, and
M.
Senthilvelan
, “
Symmetrical emergence of extreme events at multiple regions in a damped and driven velocity-dependent mechanical system
,”
Phys. Scr.
96
,
095216
(
2021
).
45.
G. F.
de Oliveira Jr.
,
O.
Di Lorenzo
,
T. P.
de Silans
,
M.
Chevrollier
,
M.
Oriá
, and
H. L.
de Souza Cavalcante
, “
Local instability driving extreme events in a pair of coupled chaotic electronic circuits
,”
Phys. Rev. E
93
,
062209
(
2016
).
46.
C.
Bonatto
,
M.
Feyereisen
,
S.
Barland
,
M.
Giudici
,
C.
Masoller
,
J. R. R.
Leite
, and
J. R.
Tredicce
, “
Deterministic optical rogue waves
,”
Phys. Rev. Lett.
107
,
053901
(
2011
).
47.
A.
Pisarchik
,
V.
Grubov
,
V.
Maksimenko
,
A.
Lüttjohann
,
N.
Frolov
,
C.
Marqués-Pascual
,
D.
Gonzalez-Nieto
,
M.
Khramova
, and
A.
Hramov
, “
Extreme events in epileptic EEG of rodents after ischemic stroke
,”
Eur. Phys. J. Spec. Top.
227
,
921
932
(
2018
).
48.
A.
Toffoli
,
D.
Proment
,
H.
Salman
,
J.
Monbaliu
,
F.
Frascoli
,
M.
Dafilis
,
E.
Stramignoni
,
R.
Forza
,
M.
Manfrin
, and
M.
Onorato
, “
Wind generated rogue waves in an annular wave flume
,”
Phys. Rev. Lett.
118
,
144503
(
2017
).
49.
J. A.
Reinoso
,
J.
Zamora-Munt
, and
C.
Masoller
, “
Extreme intensity pulses in a semiconductor laser with a short external cavity
,”
Phys. Rev. E
87
,
062913
(
2013
).
50.
T. P.
Sapsis
, “
New perspectives for the prediction and statistical quantification of extreme events in high-dimensional dynamical systems
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
376
,
20170133
(
2018
).
51.
J.
Zamora-Munt
,
B.
Garbin
,
S.
Barland
,
M.
Giudici
,
J. R. R.
Leite
,
C.
Masoller
, and
J. R.
Tredicce
, “
Rogue waves in optically injected lasers: Origin, predictability, and suppression
,”
Phys. Rev. A
87
,
035802
(
2013
).
52.
A.
Ray
,
S.
Rakshit
,
G. K.
Basak
,
S. K.
Dana
, and
D.
Ghosh
, “
Understanding the origin of extreme events in El Niño Southern oscillation
,”
Phys. Rev. E
101
,
062210
(
2020
).
53.
S.
Sudharsan
,
A.
Venkatesan
,
P.
Muruganandam
, and
M.
Senthilvelan
, “
Emergence and mitigation of extreme events in a parametrically driven system with velocity-dependent potential
,”
Eur. Phys. J. Plus
136
,
129
(
2021
).
54.
B.
Kaviya
,
R.
Gopal
,
R.
Suresh
, and
V.
Chandrasekar
, “
Route to extreme events in a parametrically driven position-dependent nonlinear oscillator
,”
Eur. Phys. J. Plus
138
,
36
(
2023
).
55.
C.
Grebogi
,
E.
Ott
,
F.
Romeiras
, and
J. A.
Yorke
, “
Critical exponents for crisis-induced intermittency
,”
Phys. Rev. A
36
,
5365
(
1987
).
56.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Chaotic attractors in crisis
,”
Phys. Rev. Lett.
48
,
1507
(
1982
).
57.
G.
Celso
,
O.
Edward
, and
A. Y.
James
, “
Crises, sudden changes in chaotic attractors, and transient chaos
,”
Physica D
7
,
181
200
(
1983
).
58.
R.
Simile Baroni
,
R. E.
de Carvalho
,
I. L.
Caldas
,
R. L.
Viana
, and
P. J.
Morrison
, “
Chaotic saddles and interior crises in a dissipative nontwist system
,”
Phys. Rev. E
107
,
024216
(
2023
).
59.
A. N.
Pisarchik
,
R.
Jaimes-Reátegui
,
R.
Sevilla-Escoboza
,
G.
Huerta-Cuellar
, and
M.
Taki
, “
Rogue waves in a multistable system
,”
Phys. Rev. Lett.
107
,
274101
(
2011
).
60.
R.
Jaimes-Reátegui
,
G.
Huerta-Cuellar
,
J.
García-López
, and
A.
Pisarchik
, “
Multistability and noise-induced transitions in the model of bidirectionally coupled neurons with electrical synaptic plasticity
,”
Eur. Phys. J. Spec. Top.
231
,
255
265
(
2022
).
61.
C.
Nicolis
,
V.
Balakrishnan
, and
G.
Nicolis
, “
Extreme events in deterministic dynamical systems
,”
Phys. Rev. Lett.
97
,
210602
(
2006
).
62.
R.
Suresh
and
V.
Chandrasekar
, “
Parametric excitation induced extreme events in MEMS and Liénard oscillator
,”
Chaos
30
,
083141
(
2020
).
63.
A.
Ray
,
T.
Bröhl
,
A.
Mishra
,
S.
Ghosh
,
D.
Ghosh
,
T.
Kapitaniak
,
S. K.
Dana
, and
C.
Hens
, “
Extreme events in a complex network: Interplay between degree distribution and repulsive interaction
,”
Chaos
32
,
121103
(
2022
).
64.
S.
Nag Chowdhury
,
S.
Majhi
,
M.
Ozer
,
D.
Ghosh
, and
M.
Perc
, “
Synchronization to extreme events in moving agents
,”
New J. Phys.
21
,
073048
(
2019
).
65.
S.
Nag Chowdhury
,
S.
Majhi
, and
D.
Ghosh
, “
Distance dependent competitive interactions in a frustrated network of mobile agents
,”
IEEE Trans. Network Sci. Eng.
7
,
3159
3170
(
2020
).
66.
S. F.
Brandt
,
B. K.
Dellen
, and
R.
Wessel
, “
Synchronization from disordered driving forces in arrays of coupled oscillators
,”
Phys. Rev. Lett.
96
,
034104
(
2006
).
67.
Y.
Braiman
,
J. F.
Lindner
, and
W. L.
Ditto
, “
Taming spatiotemporal chaos with disorder
,”
Nature
378
,
465
467
(
1995
).
68.
A.
Gavrielides
,
T.
Kottos
,
V.
Kovanis
, and
G.
Tsironis
, “
Spatiotemporal organization of coupled nonlinear pendula through impurities
,”
Phys. Rev. E
58
,
5529
(
1998
).
69.
L.
Dostal
,
K.
Korner
,
E.
Kreuzer
, and
D.
Yurchenko
, “
Pendulum energy converter excited by random loads
,”
ZAMM
98
,
349
366
(
2018
).
70.
M.
Fistul
and
A.
Ustinov
, “
Libration states of a nonlinear oscillator: Resonant escape of a pinned magnetic fluxon
,”
Phys. Rev. B
63
,
024508
(
2000
).
71.
X.
Xu
and
M.
Wiercigroch
, “
Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum
,”
Nonlinear Dyn.
47
,
311
320
(
2006
).
72.
A.
Gavrielides
,
T.
Kottos
,
V.
Kovanis
, and
G.
Tsironis
, “
Self-organization of coupled nonlinear oscillators through impurities
,”
Europhys. Lett.
44
,
559
(
1998
).
73.
S.
Nag Chowdhury
,
S.
Kundu
,
M.
Perc
, and
D.
Ghosh
, “
Complex evolutionary dynamics due to punishment and free space in ecological multigames
,”
Proc. R. Soc. A
477
,
20210397
(
2021
).
74.
S.
Nag Chowdhury
and
D.
Ghosh
, “
Hidden attractors: A new chaotic system without equilibria
,”
Eur. Phys. J. Spec. Top.
229
,
1299
1308
(
2020
).
75.
B.
Thangavel
,
S.
Srinivasan
, and
T.
Kathamuthu
, “
Extreme events in a forced BVP oscillator: Experimental and numerical studies
,”
Chaos, Solitons Fractals
153
,
111569
(
2021
).
76.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
Cambridge
,
2003
).
77.
S.
Shiju
and
K.
Sriram
, “
Hilbert transform-based time-series analysis of the circadian gene regulatory network
,”
IET Syst. Biol.
13
,
159
(
2019
).
78.
R.
Govindan
,
S.
Vairavan
,
J.
Wilson
,
H.
Preissl
,
J.
Vrba
,
C.
Lowery
, and
H.
Eswaran
, “
Understanding dynamics of the system using hilbert phases: An application to study neonatal and fetal brain signals
,”
Phys. Rev. E
80
,
046213
(
2009
).
79.
M.
Santhanam
and
H.
Kantz
, “
Return interval distribution of extreme events and long-term memory
,”
Phys. Rev. E
78
,
051113
(
2008
).
You do not currently have access to this content.