We investigate deformed/controllable characteristics of solitons in inhomogeneous parity-time ( P T ) -symmetric optical media. To explore this, we consider a variable-coefficient nonlinear Schrödinger equation involving modulated dispersion, nonlinearity, and tapering effect with P T -symmetric potential, which governs the dynamics of optical pulse/beam propagation in longitudinally inhomogeneous media. By incorporating three physically interesting and recently identified forms of P T -symmetric potentials, namely, rational, Jacobian periodic, and harmonic-Gaussian potentials, we construct explicit soliton solutions through similarity transformation. Importantly, we investigate the manipulation dynamics of such optical solitons due to diverse inhomogeneities in the medium by implementing step-like, periodic, and localized barrier/well-type nonlinearity modulations and revealing the underlying phenomena. Also, we corroborate the analytical results with direct numerical simulations. Our theoretical exploration will provide further impetus in engineering optical solitons and their experimental realization in nonlinear optics and other inhomogeneous physical systems.

1.
G. B.
Whitham
,
Linear and Nonlinear Waves
(
Wiley
,
New York
,
1974
).
2.
J.
Yang
,
Nonlinear Waves in Integrable and Nonintegrable Systems
(
SIAM
,
Philadelphia, PA
,
2010
).
3.
Y. S.
Kivshar
and
G. P.
Agrawal
,
Optical Solitons: From Fibers to Photonic Crystals
(
Academic Press
,
San Diego, CA
,
2003
).
4.
N.
Akhmediev
,
A.
Ankiewicz
, and
M.
Taki
, “
Waves that appear from nowhere and disappear without a trace
,”
Phys. Lett. A
373
,
675
678
(
2009
).
5.
M.
Onorato
,
S.
Resitori
, and
F.
Baronio
,
Rogue and Shock Waves in Nonlinear Dispersive Media
(
Springer
,
New York
,
2016
).
6.
J. M.
Dudley
,
C.
Finot
,
G.
Genty
, and
R.
Taylor
, “
Fifty years of fiber solitons
,”
Opt. Photon. News
34
(
5
),
26
(
2023
).
7.
P. G.
Kevrekidis
,
D. J.
Frantzeskakis
, and
R.
Carretero-González
,
Emergent Nonlinear Phenomena in Bose-Einstein Condensates
(
Springer-Verlag
,
Berlin
,
2008
).
8.
V.
Belinski
and
E.
Verdaguer
,
Gravitational Solitons
(
Cambridge University Press
,
Cambridge
,
2001
).
9.
T.
Kanna
and
K.
Sakkaravarthi
, “
Multicomponent coherently coupled and incoherently coupled solitons and their collisions
,”
J. Phys. A: Math. Theor.
44
,
285211
(
2011
).
10.
S.
Stalin
,
R.
Ramakrishnan
,
M.
Senthilvelan
, and
M.
Lakshmanan
, “
Nondegenerate solitons in Manakov system
,”
Phys. Rev. Lett.
122
,
043901
(
2019
).
11.
J.
Rao
,
T.
Kanna
,
K.
Sakkaravarthi
, and
J.
He
, “
Multiple double-pole bright-bright and bright-dark solitons and energy-exchanging collision in the M -component nonlinear Schrödinger equations
,”
Phys. Rev. E
103
,
062214
(
2021
).
12.
Dissipative Solitons: From Optics to Biology and Medicine, edited by N. Akhmediev and A. Ankiewicz (Springer, Berlin, 2008).
13.
E.
Kengne
,
W. M.
Liu
, and
B. A.
Malomed
, “
Spatiotemporal engineering of matter-wave solitons in Bose–Einstein condensates
,”
Phys. Rep.
899
,
1
62
(
2021
).
14.
K.
Sakkaravarthi
,
T.
Kanna
, and
R.
Babu Mareeswaran
, “
Higher-order optical rogue waves in spatially inhomogeneous multimode fiber
,”
Physica D
435
,
133285
(
2022
).
15.
W. H.
Renninger
and
F. W.
Wise
, “
Optical solitons in graded index multimode fibres
,”
Nat. Commun.
4
,
1719
(
2013
).
16.
A. S.
Ahsan
and
G. P.
Agrawal
, “
Graded index solitons in multimode fibers
,”
Opt. Lett.
43
,
3345
3348
(
2018
).
17.
K.
Manikandan
,
M.
Senthilvelan
, and
R.
Kraenkel
, “
Amplification of matter rogue waves and breathers in quasi-two-dimensional Bose–Einstein condensates
,”
Eur. Phys. J. B
89
,
30
(
2016
).
18.
R. B.
Mareeswaran
,
K.
Sakkaravarthi
, and
T.
Kanna
, “
Manipulation of vector solitons in a system of inhomogeneous coherently coupled nonlinear Schrödinger models with variable nonlinearities
,”
J. Phys. A: Math. Theor.
53
,
415701
(
2020
).
19.
N.
Sinthuja
,
K.
Manikandan
, and
M.
Senthilvelan
, “
Formation of rogue waves on the periodic background in a fifth-order nonlinear Schrödinger equation
,”
Phys. Lett. A
415
,
127640
(
2021
).
20.
K.
Manikandan
,
S.
Stalin
, and
M.
Senthilvelan
, “
Dynamical behaviour of solitons in a P T -invariant nonlocal nonlinear Schrödinger equation with distributed coefficients
,”
Eur. Phys. J. B
91
,
291
(
2018
).
21.
K. G.
Makris
,
R.
El-Ganainy
,
D. N.
Christodoulides
, and
Z. H.
Musslimani
, “
Beam dynamics in P T -symmetric optical lattices
,”
Phys. Rev. Lett.
100
,
103904
(
2008
).
22.
Z. H.
Musslimani
,
K. G.
Makris
,
R.
El-Ganainy
, and
D. N.
Christodoulides
, “
Optical solitons in P T periodic potentials
,”
Phys. Rev. Lett.
100
,
030402
(
2008
).
23.
R.
El-Ganainy
,
K. G.
Makris
,
D. N.
Christodoulides
, and
Z. H.
Musslimani
, “
Theory of coupled optical P T -symmetric structures
,”
Opt. Lett.
32
,
2632
(
2007
).
24.
C. M.
Bender
and
S.
Boettcher
, “
Real spectra in non-Hermitian Hamiltonians having P T -symmetry
,”
Phys. Rev. Lett.
80
,
5243
5246
(
1998
).
25.
K. G.
Makris
,
R.
El-Ganainy
,
D. N.
Christodoulides
, and
Z. H.
Musslimani
, “
P T -symmetric optical lattices
,”
Phys. Rev. A
81
,
063807
(
2010
).
26.
Z.
Lin
,
H.
Ramezani
,
T.
Eichelkraut
,
T.
Kottos
,
H.
Cao
, and
D. N.
Christodoulides
, “
Unidirectional invisibility induced by P T -symmetric periodic structures
,”
Phys. Rev. Lett.
106
,
213901
(
2011
).
27.
H.
Ramezani
,
D. N.
Christodoulides
,
V.
Kovanis
,
I.
Vitebskiy
, and
T.
Kottos
, “
P T -symmetric Talbot effects
,”
Phys. Rev. Lett.
109
,
033902
(
2012
).
28.
A.
Regensburger
,
C.
Bersch
,
M. A.
Miri
,
G.
Onishchukov
,
D. N.
Christodoulides
, and
U.
Peschel
, “
Parity-time synthetic photonic lattices
,”
Nature
488
,
167
(
2012
).
29.
V. V.
Konotop
,
J.
Yang
, and
D. A.
Zezyulin
, “
Nonlinear waves in P T -symmetric systems
,”
Rev. Mod. Phys.
88
,
035002
(
2016
).
30.
Y.
Kominis
,
J.
Cuevas-Maraver
,
P. G.
Kevrekidis
,
D. J.
Frantzeskakis
, and
A.
Bountis
, “
Continuous families of solitary waves in non-symmetric complex potentials: A Melnikov theory approach
,”
Chaos, Solitons Fractals
118
,
222
233
(
2019
).
31.
N.
Akhmediev
and
A.
Ankiewicz
,
Dissipative Solitons: From Optics to Biology and Medicine
(
Springer
,
Berlin
,
2005
).
32.
A.
Khare
,
S. M.
Al-Marzoug
, and
H.
Bahlouli
, “
Solitons in PT -symmetric potential with competing nonlinearity
,”
Phys. Lett. A
376
,
2880
2886
(
2012
).
33.
D. A.
Zezyulin
and
V. V.
Konotop
, “
Nonlinear mode in the harmonic P T -symmetric potential
,”
Phys. Rev. A
85
,
043840
(
2012
).
34.
Z. H.
Musslimani
,
K. G.
Makris
,
R.
El-Ganainy
, and
D. N.
Christodoulides
, “
Analytical solutions to a class of nonlinear Schrödinger equations with P T -like potentials
,”
J. Phys. A: Math. Theor.
41
,
244019
(
2008
).
35.
K.
Manikandan
,
J. B.
Sudharsan
, and
M.
Senthilvelan
, “
Nonlinear tunneling of solitons in a variable coefficients nonlinear Schrödinger equation with P T -symmetric Rosen–Morse potential
,”
Eur. Phys. J. B
94
,
122
(
2021
).
36.
Z.
Yan
,
Z.
Wen
, and
V. V.
Konotop
, “
Solitons in a nonlinear Schrödinger equation with P T -symmetric potentials and inhomogeneous nonlinearity: Stability and excitation of nonlinear modes
,”
Phys. Rev. A
92
,
023821
(
2015
).
37.
Z. C.
Wen
and
Z.
Yan
, “
Dynamical behaviors of optical solitons in P T -symmetric sextic ahnarmonic double-well potentials
,”
Phys. Lett. A
379
,
2025
2029
(
2015
).
38.
B.
Midya
, “
Analytical stable Gaussian soliton supported by a parity-time symmetric potential with power-law nonlinearity
,”
Nonlinear Dyn.
79
,
409
(
2015
).
39.
X.
Li
,
Y.
Chen
, and
Z.
Yan
, “
Fundamental solitons and dynamical analysis in the defocusing Kerr medium and P T -symmetric rational potential
,”
Nonlinear Dyn.
91
,
853
861
(
2018
).
40.
Z. W.
Shi
,
X. J.
Jiang
,
X.
Zhu
, and
H. G.
Li
, “
Bright spatial solitons in defocusing Kerr media with P T -symmetric potentials
,”
Phys. Rev. A
84
,
053855
(
2011
).
41.
V.
Achilleos
,
P. G.
Kevrekidis
,
D. J.
Frantzeskakis
, and
R.
Carretero-Gonzáles
, “
Dark solitons and vortices in P T -symmetric nonlinear media: From spontaneous symmetry breaking to nonlinear P T phase transitions
,”
Phys. Rev. A
86
,
013808
(
2012
).
42.
G.
Lévai
, “
Comparative analysis of real and P T -symmetric Scarf potentials
,”
Czech. J. Phys.
56
,
953
966
(
2006
).
43.
W. P.
Zhong
,
M. R.
Belić
, and
T. W.
Huang
, “
Two-dimensional accessible solitons in P T -symmetric potentials
,”
Nonlinear Dyn.
70
,
2027
(
2012
).
44.
H.
Ji
,
Y.
Xu
,
C. Q.
Dai
, and
L.
Zhang
, “
Propagation of local spatial solitons in power-law nonlinear PT -symmetric potentials based on finite difference
,”
Commun. Theor. Phys.
73
,
125002
(
2021
).
45.
Y. Y.
Wang
,
C. Q.
Dai
, and
X. G.
Wang
, “
Stable localized spatial solitons in P T -symmetric potentials with power-law nonlinearity
,”
Nonlinear Dyn.
77
,
1323
1330
(
2014
).
46.
J. K.
Yang
, “
3D cubic and power-law nonlinear Schrödinger equations with different coefficients of dispersion/diffraction and their optical soliton solutions in parity-time symmetric potentials
,”
Optik
198
,
163213
(
2019
).
47.
Y.
Zhu
,
W.
Qin
,
J.
Yang
,
S. H.
Wang
, and
J. T.
Li
, “
(L + 1)D localized modes in the power-law nonlinear media with fourth order dispersion/diffraction under P T -symmetric potentials
,”
Optik
198
,
163296
(
2019
).
48.
C. Q.
Dai
,
X. F.
Zhang
,
Y.
Fan
, and
L.
Chen
, “
Localized modes of the ( n + 1 ) -dimensional Schrödinger equation with power-law nonlinearities in P T -symmetric potentials
,”
Commun. Nonlinear Sci. Numer. Simul.
43
,
239
(
2017
).
49.
P. G.
Kevrekidis
,
The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives
(
Springer-Verlag
,
Berlin
,
2009
).
50.
M. J.
Ablowitz
and
Z. H.
Musslimani
, “
Integrable discrete P T -symmetric model
,”
Phys. Rev. E
90
,
032912
(
2014
).
51.
H.
Susanto
,
R.
Kusdiantara
,
N.
Li
,
O. B.
Kirikchi
,
D.
Adzkiya
,
E. R. M.
Putri
, and
T.
Asfihani
, “
Snakes and ghosts in a parity-time-symmetric chain of dimers
,”
Phys. Rev. E
97
,
062204
(
2018
).
52.
O. B.
Kirikchi
,
B. A.
Malomed
,
N.
Karjanto
,
R.
Kusdiantara
, and
H.
Susanto
, “
Solitons in a chain of charge-parity-symmetric dimers
,”
Phys. Rev. A
98
,
063841
(
2018
).
53.
O. B.
Kirikchi
and
N.
Karjanto
, “
Discrete solitons dynamics in P T -symmetric oligomers with complex-valued couplings
,”
Nonlinear Dyn.
103
,
2769
(
2021
).
54.
F.
Yu
, “
Dynamics of nonautonomous discrete rogue wave solutions for an Ablowitz–Musslimani equation with P T -symmetric potential
,”
Chaos
27
,
023108
(
2017
).
55.
O. V.
Borovkova
,
V. E.
Lobanov
, and
B. A.
Malomed
, “
Solitons supported by singular spatial modulation of the Kerr nonlinearity
,”
Phys. Rev. A
85
,
023845
(
2012
).
56.
Y.
Kominis
and
K.
Hizanidis
, “
Power dependent soliton location and stability in complex photonic structures
,”
Opt. Exp.
16
,
12124
(
2008
).
57.
Y. V.
Kartashov
,
B. A.
Malomed
, and
L.
Torner
, “
Solitons in nonlinear lattices
,”
Rev. Mod. Phys.
83
,
247
(
2011
).
58.
C. Q.
Dai
,
Y. J.
Xu
, and
Y.
Wang
, “
Nonautonomous cnoidal wave and soliton management in parity-time symmetric potentials
,”
Commun. Nonlinear Sci. Numer. Simul.
20
,
389
400
(
2015
).
59.
C. Q.
Dai
and
Y. Y.
Wang
, “
A bright 2D spatial soliton in inhomogeneous Kerr media with PT -symmetric potentials
,”
Laser Phys.
24
,
035401
(
2014
).
60.
C. Q.
Dai
,
R. P.
Chen
,
Y. Y.
Wang
, and
Y.
Fan
, “
Dynamics of light bullets in inhomogeneous cubic-quintic-septimal nonlinear media with P T -symmetric potentials
,”
Nonlinear Dyn.
87
,
1675
1683
(
2017
).
61.
A.
Messouber
,
H.
Triki
,
F.
Azzouzi
,
Q.
Zhou
,
A.
Biswas
,
S. P.
Moshokoa
, and
M.
Belic
, “
Propagation properties of dipole-managed solitons through an inhomogeneous cubic-quintic-septic medium
,”
Opt. Commun.
425
,
64
70
(
2018
).
62.
K.
Manikandan
and
J. B.
Sudharsan
, “
Manipulating two-dimensional solitons in inhomogeneous nonlinear Schrödinger equation with power-law nonlinearity under P T -symmetric Rosen-Morse and hyperbolic Scarff-II potentials
,”
Optik
256
,
168703
(
2022
).
63.
S.
Sabari
,
O. T.
Lekeufack
,
R.
Radha
, and
T. C.
Kofane
, “
Interplay of three-body and higher-order interactions on the modulational instability of Bose–Einstein condensate
,”
J. Opt. Soc. Am. B
37
,
A54
A61
(
2020
).
64.
W.
Lei
and
Z.
Jie-Fang
, “
Modulational instability of (1 + 1)-dimensional Bose–Einstein condensate with three-body interatomic interaction
,”
Chin. Phys. Lett.
24
,
1471
(
2007
).
65.
Z.
Shi
,
X.
Jiang
,
X.
Zhu
, and
H.
Li
, “
Bright spatial solitons in defocusing Kerr media with P T -symmetric potentials
,”
Phys. Rev. A
84
,
053855
(
2011
).
66.
Y. V.
Kartashov
,
B. A.
Malomed
, and
L.
Torner
, “
Unbreakable P T symmetry of solitons supported by inhomogeneous defocusing nonlinearity
,”
Opt. Lett.
39
,
5641
5644
(
2014
).
67.
Z.
Yan
,
Z.
Wen
, and
C.
Hang
, “
Spatial solitons and stability in self-focusing and defocusing Kerr nonlinear media with generalized parity-time-symmetric Scarff-II potentials
,”
Phys. Rev. E
92
,
022913
(
2015
).
68.
Y.
Chen
and
Z.
Yan
, “
Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT -symmetric potentials
,”
Sci. Rep.
6
,
23478
(
2016
).
69.
Y.
Chen
,
Z.
Yan
,
D.
Mihalache
, and
B. A.
Malomed
, “
Families of stable solitons and excitations in the PT -symmetric nonlinear Schrödinger equations with position-dependent effective masses
,”
Sci. Rep.
7
,
1257
(
2017
).
70.
Z.
Yan
and
Y.
Chen
, “
The nonlinear Schrödinger equation with generalized nonlinearities and P T -symmetric potentials: Stable solitons, interactions, and excitations
,”
Chaos
27
,
073114
(
2017
).
71.
Y.
Chen
,
J.
Song
,
X.
Li
, and
Z.
Yan
, “
Stability and modulation of optical peakons in self-focusing/defocusing Kerr nonlinear media with P T - δ -hyperbolic-function potentials
,”
Chaos
32
,
023122
(
2022
).
72.
J.
Song
,
Z.
Zhou
,
W.
Weng
, and
Z.
Yan
, “
P T -symmetric peakon solutions in self-focusing/defocusing power-law nonlinear media: Stability, interactions and adiabatic excitations
,”
Physica D
435
,
133266
(
2022
).
73.
Parity-Time Symmetry and Its Applications, edited by D. Christodoulides and J. Yang (Springer, Singapore, 2018).
74.
Y. V.
Kartashov
and
V. A.
Vysloukh
, “
Edge and bulk dissipative solitons in modulated P T -symmetric waveguide arrays
,”
Opt. Lett.
44
,
791
794
(
2019
).
75.
R.
El-Ganainy
,
K.
Makris
,
M.
Khajavikhan
,
Z. H.
Musslimani
,
S.
Rotter
, and
D. N.
Christodoulides
, “
Non-Hermitian physics and PT symmetry
,”
Nat. Phys.
14
,
11
19
(
2018
).
76.
E.
Luz
,
V.
Lutsky
,
E.
Granot
, and
B. A.
Malomed
, “
Robust PT -symmetry of two-dimensional fundamental and vortex solitons supported by spatially modulated nonlinearity
,”
Sci. Rep.
9
,
4483
(
2019
).
77.
S. V.
Suchkov
,
A. A.
Sukhorukov
,
J.
Huang
,
S. V.
Dmitriev
,
C.
Lee
, and
Y. S.
Kivshar
, “
Nonlinear switching and solitons in PT-symmetric photonic systems
,”
Laser Photonics Rev.
10
,
177
213
(
2016
).
78.
S.
Sudhakar
,
S.
Vignesh Raja
,
A.
Govindarajan
,
K.
Batri
, and
M.
Lakshmanan
, “
Low-power optical bistability in PT -symmetric chirped Bragg gratings with four-wave mixing
,”
J. Opt. Soc. Am. B
39
,
643
650
(
2022
).
79.
M.
Parto
,
Y. G. N.
Liu
,
B.
Bahari
,
M.
Khajavikhan
, and
D. N.
Christodoulides
, “
Non-Hermitian and topological photonics: Optics at an exceptional point
,”
Nanophotonics
10
,
403
423
(
2021
).
You do not currently have access to this content.