Every successful species invasion is facilitated by both ecological and evolutionary mechanisms. The evolution of population’s fitness related traits acts as functional adaptations to Allee effects. This trade-off increases predatory success at an expense of elevated death rate of potential predators. We address our queries employing an eco-evolutionary modeling approach that provides a means of circumventing inverse density-dependent effect. In the absence of evolution, the ecological system potentially exhibits multi-stable configurations under identical ecological conditions by allowing different bifurcation scenarios with the Allee effect. The model predicts a high risk of catastrophic extinction of interacting populations around different types of saddle-node bifurcations resulting from the increased Allee effect. We adopt the game-theoretic approach to derive the analytical conditions for the emergence of evolutionarily stable strategy (ESS) when the ecological system possesses asymptotically stable steady states as well as population cycles. We establish that ESSs occur at those values of adopted evolutionary strategies that are local optima of some functional forms of model parameters. Overall, our theoretical study provides important ecological insights in predicting successful biological invasions in the light of evolution.

1.
Y.
Yang
,
C.
Ma
, and
J.
Zu
, “
Coevolutionary dynamics of host-pathogen interaction with density-dependent mortality
,”
J. Math. Biol.
85
,
15
(
2022
).
2.
M. A.
Lewis
and
P.
Kareiva
, “
Allee dynamics and the spread of invading organisms
,”
Theor. Popul. Biol.
43
,
141
158
(
1993
).
3.
B.
Dennis
, “
Allee effects: Population growth, critical density, and the chance of extinction
,”
Nat. Resour. Model.
3
,
481
538
(
1989
).
4.
P. A.
Stephens
and
W. J.
Sutherland
, “
Consequences of the Allee effect for behaviour, ecology and conservation
,”
Trends Ecol. Evol.
14
,
401
405
(
1999
).
5.
P.
Aguirre
,
E.
Gonzalez-Olivares
, and
E.
Sáez
, “
Two limit cycles in a Leslie–Gower predator–prey model with additive Allee effect
,”
Nonlinear Anal.: Real World Appl.
10
,
1401
1416
(
2009
).
6.
J.
Wang
,
J.
Shi
, and
J.
Wei
, “
Predator–prey system with strong Allee effect in prey
,”
J. Math. Biol.
62
,
291
331
(
2011
).
7.
M.
Sen
,
M.
Banerjee
, and
A.
Morozov
, “
Bifurcation analysis of a ratio-dependent prey–predator model with the Allee effect
,”
Ecol. Complex.
11
,
12
27
(
2012
).
8.
S.
Mandal
,
F.
Al Basir
, and
S.
Ray
, “
Additive Allee effect of top predator in a mathematical model of three species food chain
,”
Energy, Ecol. Environ.
6
,
451
461
(
2021
).
9.
S.-R.
Zhou
,
Y.-F.
Liu
, and
G.
Wang
, “
The stability of predator–prey systems subject to the Allee effects
,”
Theor. Popul. Biol.
67
,
23
31
(
2005
).
10.
F.
Courchamp
,
L.
Berec
, and
J.
Gascoigne
,
Allee Effects in Ecology and Conservation
(
OUP Oxford
,
2008
).
11.
J.
Gascoigne
,
L.
Berec
,
S.
Gregory
, and
F.
Courchamp
, “
Dangerously few liaisons: A review of mate-finding Allee effects
,”
Popul. Ecol.
51
,
355
372
(
2009
).
12.
M. H.
Cortez
and
S. P.
Ellner
, “
Understanding rapid evolution in predator–prey interactions using the theory of fast-slow dynamical systems
,”
Am. Nat.
176
,
E109
E127
(
2010
).
13.
S.
Nag Chowdhury
,
S.
Kundu
,
J.
Banerjee
,
M.
Perc
, and
D.
Ghosh
, “
Eco-evolutionary dynamics of cooperation in the presence of policing
,”
J. Theor. Biol.
518
,
110606
(
2021
).
14.
S.
Roy
,
S.
Nag Chowdhury
,
P. C.
Mali
,
M.
Perc
, and
D.
Ghosh
, “
Eco-evolutionary dynamics of multigames with mutations
,”
PLoS One
17
,
e0272719
(
2022
).
15.
J.
Maynard Smith
,
On Evolution
(
Edinburgh University Press
,
1972
).
16.
W. D.
Hamilton
, “
Extraordinary sex ratios: A sex-ratio theory for sex linkage and inbreeding has new implications in cytogenetics and entomology
,”
Science
156
,
477
488
(
1967
).
17.
L. R.
Lawlor
and
J. M.
Smith
, “
The coevolution and stability of competing species
,”
Am. Nat.
110
,
79
99
(
1976
).
18.
A.
Mandal
,
P. K.
Tiwari
,
S.
Samanta
,
E.
Venturino
, and
S.
Pal
, “
A nonautonomous model for the effect of environmental toxins on plankton dynamics
,”
Nonlinear Dyn.
99
,
3373
3405
(
2020
).
19.
A.
Mandal
,
P. K.
Tiwari
, and
S.
Pal
, “
A nonautonomous model for the effects of refuge and additional food on the dynamics of phytoplankton-zooplankton system
,”
Ecol. Complex.
46
,
100927
(
2021
).
20.
S.
Biswas
,
P. K.
Tiwari
,
F.
Bona
,
S.
Pal
, and
E.
Venturino
, “
Modeling the avoidance behavior of zooplankton on phytoplankton infected by free viruses
,”
J. Biol. Phys.
46
,
1
31
(
2020
).
21.
S.
Biswas
,
P. K.
Tiwari
, and
S.
Pal
, “
Delay-induced chaos and its possible control in a seasonally forced eco-epidemiological model with fear effect and predator switching
,”
Nonlinear Dyn.
104
,
2901
2930
(
2021
).
22.
A.
Mandal
,
S.
Biswas
, and
S.
Pal
, “
Toxicity-mediated regime shifts in a contaminated nutrient–plankton system
,”
Chaos
33
(
2
),
023106
(
2023
).
23.
S.
Biswas
and
A.
Mandal
, “
Cooperation-mediated regime shifts in a disease-dominated prey–predator system
,”
Chaos, Solitons Fractals
170
,
113352
(
2023
).
24.
I.
Franović
,
O. E.
Omel’chenko
, and
M.
Wolfrum
, “
Phase-sensitive excitability of a limit cycle
,”
Chaos
28
,
071105
(
2018
).
25.
I.
Bačić
,
V.
Klinshov
,
V.
Nekorkin
,
M.
Perc
, and
I.
Franović
, “
Inverse stochastic resonance in a system of excitable active rotators with adaptive coupling
,”
Europhys. Lett.
124
,
40004
(
2018
).
26.
S.
Zhou
,
P.
Ji
,
Q.
Zhou
,
J.
Feng
,
J.
Kurths
, and
W.
Lin
, “
Adaptive elimination of synchronization in coupled oscillator
,”
New J. Phys.
19
,
083004
(
2017
).
27.
S.
Ghosh
,
A.
Mondal
,
P.
Ji
,
A.
Mishra
,
S. K.
Dana
,
C. G.
Antonopoulos
, and
C.
Hens
, “
Emergence of mixed mode oscillations in random networks of diverse excitable neurons: The role of neighbors and electrical coupling
,”
Front. Comput. Neurosci.
14
,
49
(
2020
).
28.
M.
Uzuntarla
,
E.
Barreto
, and
J. J.
Torres
, “
Inverse stochastic resonance in networks of spiking neurons
,”
PLoS Comput. Biol.
13
,
e1005646
(
2017
).
29.
T.
Palabas
,
A.
Longtin
,
D.
Ghosh
, and
M.
Uzuntarla
, “
Controlling the spontaneous firing behavior of a neuron with astrocyte
,”
Chaos
32
,
051101
(
2022
).
30.
P. A.
Abrams
,
H.
Matsuda
, and
Y.
Harada
, “
Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits
,”
Evol. Ecol.
7
,
465
487
(
1993
).
31.
P.
Marrow
,
U.
Dieckmann
, and
R.
Law
, “
Evolutionary dynamics of predator–prey systems: An ecological perspective
,”
J. Math. Biol.
34
,
556
578
(
1996
).
32.
M.
Kot
,
Elements of Mathematical Ecology
(
Cambridge University Press
,
2001
).
33.
X.
Wang
,
L.
Zanette
, and
X.
Zou
, “
Modelling the fear effect in predator–prey interactions
,”
J. Math. Biol.
73
,
1179
1204
(
2016
).
34.
J.
Zu
and
M.
Mimura
, “
The impact of Allee effect on a predator–prey system with Holling type II functional response
,”
Appl. Math. Comput.
217
,
3542
3556
(
2010
).
35.
J.
Reed
and
N. C.
Stenseth
, “
On evolutionarily stable strategies
,”
J. Theor. Biol.
108
,
491
508
(
1984
).
36.
C.
Mitra
,
A.
Choudhary
,
S.
Sinha
,
J.
Kurths
, and
R. V.
Donner
, “
Multiple-node basin stability in complex dynamical networks
,”
Phys. Rev. E
95
,
032317
(
2017
).
37.
P.
Ji
,
W.
Lin
, and
J.
Kurths
, “
Asymptotic scaling describing signal propagation in complex networks
,”
Nat. Phys.
16
,
1082
1083
(
2020
).
38.
X.
Bao
,
Q.
Hu
,
P.
Ji
,
W.
Lin
,
J.
Kurths
, and
J.
Nagler
, “
Impact of basic network motifs on the collective response to perturbations
,”
Nat. Commun.
13
,
5301
(
2022
).
39.
K.
Grunert
,
H.
Holden
,
E. R.
Jakobsen
, and
N. C.
Stenseth
, “
Evolutionarily stable strategies in stable and periodically fluctuating populations: The Rosenzweig–Macarthur predator–prey model
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2017463118
(
2021
).
40.
S. K.
Sasmal
and
D.
Ghosh
, “
Effect of dispersal in two-patch prey–predator system with positive density dependence growth of preys
,”
Biosystems
151
,
8
20
(
2017
).
You do not currently have access to this content.