The complex phase interactions of the two-phase flow are a key factor in understanding the flow pattern evolutional mechanisms, yet these complex flow behaviors have not been well understood. In this paper, we employ a series of gas–liquid two-phase flow multivariate fluctuation signals as observations and propose a novel interconnected ordinal pattern network to investigate the spatial coupling behaviors of the gas–liquid two-phase flow patterns. In addition, we use two network indices, which are the global subnetwork mutual information ( I) and the global subnetwork clustering coefficient ( C), to quantitatively measure the spatial coupling strength of different gas–liquid flow patterns. The gas–liquid two-phase flow pattern evolutionary behaviors are further characterized by calculating the two proposed coupling indices under different flow conditions. The proposed interconnected ordinal pattern network provides a novel tool for a deeper understanding of the evolutional mechanisms of the multi-phase flow system, and it can also be used to investigate the coupling behaviors of other complex systems with multiple observations.

1.
Y. H.
Wu
,
L. S.
Cheng
,
S. J.
Huang
,
Y. H.
Bai
,
P.
Jia
,
S. R.
Wang
,
B. X.
Xu
, and
L.
Chen
, “
An approximate semianalytical method for two-phase flow analysis of liquid-rich shale gas and tight light-oil wells
,”
J. Pet. Sci. Eng.
176
,
562
572
(
2019
).
2.
P. I.
Cano
,
J.
Brito
,
F.
Almenglo
,
M.
Ramírez
,
J. M.
Gómez
, and
D.
Cantero
, “
Influence of trickling liquid velocity, low molar ratio of nitrogen-sulfur and gas-liquid flow pattern in anoxic biotrickling filters for biogas desulfurization
,”
Biochem. Eng. J.
148
,
205
213
(
2019
).
3.
Y. J.
Chang
,
Q.
Xu
,
Q. H.
Wu
,
X. Y.
Zhao
,
B.
Huang
,
Y. C.
Wang
, and
L. J.
Guo
, “
Experimental study of the hydraulic jump phenomenon induced by the downstream riser structure in a pipeline–riser system
,”
Chem. Eng. Sci.
256
,
117687
(
2022
).
4.
L.
Zha
,
M. J.
Shang
,
M.
Qiu
,
H.
Zhang
, and
Y. H.
Su
, “
Process intensification of mixing and chemical modification for polymer solutions in microreactors based on gas-liquid two-phase flow
,”
Chem. Eng. Sci.
195
,
62
73
(
2019
).
5.
L. S.
Zhai
,
J.
Yang
, and
Y. Q.
Wang
, “
An investigation of transition processes from transient gas–liquid plug to slug flow in horizontal pipe: Experiment and cost-based recurrence analysis
,”
Nucl. Eng. Des.
379
,
111253
(
2021
).
6.
B.
Wu
,
M.
Firouzi
,
T.
Mitchell
,
T. E.
Rufford
,
C.
Leonardi
, and
B.
Towler
, “
A critical review of flow maps for gas-liquid flows in vertical pipes and annuli
,”
Chem. Eng. J.
326
,
350
377
(
2017
).
7.
F.
Dong
,
L. H.
Li
, and
S. M.
Zhang
, “
Flow status identification based on multiple slow feature analysis of gas-liquid two-phase flow in horizontal pipes
,”
Meas. Sci. Technol.
32
,
055301
(
2021
).
8.
A. V.
Chinak
,
A. E.
Gorelikova
,
O. N.
Kashinsky
,
M. A.
Pakhomov
,
V. V.
Randin
, and
V. I.
Terekhov
, “
Hydrodynamics and heat transfer in an inclined bubbly flow
,”
Int. J. Heat Mass Transfer
118
,
785
801
(
2018
).
9.
S.
Baragh
,
H.
Shokouhmand
, and
S. S. M.
Ajarostaghi
, “
Experiments on mist flow and heat transfer in a tube fitted with porous media
,”
Int. J. Therm. Sci.
137
,
388
398
(
2019
).
10.
C. S.
Daw
,
C. E. A.
Finney
,
M.
Vasudevan
,
N. A.
Van Goor
,
K.
Nguyen
,
D. D.
Bruns
,
E. J.
Kostelich
,
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Self-organization and chaos in a fluidized bed
,”
Phys. Rev. Lett.
75
,
2308
(
1995
).
11.
Z.
Wu
,
Z.
Cao
, and
B.
Sunden
, “
Flow patterns and slug scaling of liquid-liquid flow in square microchannels
,”
Int. J. Multiphase Flow
112
,
27
39
(
2019
).
12.
N.
Zhao
,
C. F.
Li
,
H. J.
Jia
,
F.
Wang
,
Z. Y.
Zhao
,
L. D.
Fang
, and
X. T.
Li
, “
Acoustic emission-based flow noise detection and mechanism analysis for gas-liquid two-phase flow
,”
Measurement
179
,
109480
(
2021
).
13.
H.
Ziaei-Halimejani
,
S.
Kouzbour
,
R.
Zarghami
,
R.
Sotudeh-Gharebagh
,
B.
Gourich
,
N.
Mostoufi
, and
Y.
Stiriba
, “
Monitoring of the bubble columns hydrodynamics by recurrence quantification data analysis
,”
Chem. Eng. Res. Des.
171
,
100
110
(
2021
).
14.
Z. K.
Gao
,
D. M.
Lv
,
W. D.
Dang
,
M. X.
Liu
, and
X. L.
Hong
, “
Multilayer network from multiple entropies for characterizing gas-liquid nonlinear flow behavior
,”
Int. J. Bifurcation Chaos
30
,
2050014
(
2020
).
15.
Q. M.
Sun
and
B.
Zhang
, “
Nonlinear characterization of gas liquid two-phase flow in complex networks
,”
Exp. Therm. Fluid Sci.
60
,
165
172
(
2015
).
16.
W. Z.
Liu
,
Q.
Xu
,
S. F.
Zou
,
Y. J.
Chang
, and
L. J.
Guo
, “
Optimization of differential pressure signal acquisition for recognition of gas–liquid two-phase flow patterns in pipeline-riser system
,”
Chem. Eng. Sci.
229
,
116043
(
2021
).
17.
S.
Wijayanta
,
Deendarlianto
,
Indarto
,
A.
Prasetyo
, and
A. Z.
Hudaya
, “
The effect of the liquid physical properties on the wave frequency and wave velocity of co-current gas-liquid stratified two-phase flow in a horizontal pipe
,”
Int. J. Multiphase Flow
158
,
104300
(
2023
).
18.
W. K.
Ren
,
J. C.
Zhang
, and
N. D.
Jin
, “
Rescaled range permutation entropy: A method for quantifying the dynamical complexity of gas-liquid two-phase slug flow
,”
Nonlinear Dyn.
104
,
4035
4043
(
2021
).
19.
D.
Li
,
M.
Chen
,
S.
Zhao
, and
A. W.
Zeng
, “
Entropy generation analysis of Rayleigh convection in gas–liquid mass transfer process
,”
Chem. Eng. Res. Des.
134
,
359
369
(
2018
).
20.
A. V.
Cherdantsev
,
S. A.
Zdornikov
,
M. V.
Cherdantsev
,
S. V.
Isaenkov
, and
D. M.
Markovich
, “
Stratified-to-annular gas-liquid flow patterns transition in a horizontal pipe
,”
Exp. Therm. Fluid Sci.
132
,
110552
(
2022
).
21.
L. S.
Zhai
,
H. L.
Xie
,
J.
Yang
,
Y. L.
Wu
, and
X. Z.
Lu
, “
Characterizing dynamics of swirling film in gas-liquid cylindrical cyclone separator using multi-scale entropy analysis
,”
Int. J. Mod. Phys. C
30
,
2050001
(
2019
).
22.
B. A.
Khudayarov
and
K. M.
Komilova
, “
Vibration and dynamic stability of composite pipelines conveying a two-phase fluid flows
,”
Eng. Fail. Anal.
104
,
500
512
(
2019
).
23.
M.
Du
,
L.
Zhang
,
X. Y.
Niu
, and
C.
Grebogi
, “
Detecting gas-liquid two-phase flow pattern determinism from experimental signals with missing ordinal patterns
,”
Chaos
30
,
093102
(
2020
).
24.
D.
Diego
,
K. A.
Haaga
, and
B.
Hannisdal
, “
Transfer entropy computation using the Perron-Frobenius operator
,”
Phys. Rev. E
99
,
042212
(
2019
).
25.
P.
Sundaram
,
M.
Luessi
,
M.
Bianciardi
,
S.
Stufflebeam
,
M.
Hämäläinen
, and
V.
Solo
, “
Individual resting-state brain networks enabled by massive multivariate conditional mutual information
,”
IEEE Trans. Med. Imaging
39
,
1957
1966
(
2019
).
26.
M.
Rosenblum
,
M.
Frühwirth
,
M.
Moser
, and
A.
Pikovsky
, “
Dynamical disentanglement in an analysis of oscillatory systems: An application to respiratory sinus arrhythmia
,”
Philos. Trans. R. Soc. A
377
,
20190045
(
2019
).
27.
J. L.
Neri
,
P.
Depalle
, and
R.
Badeau
, “
Approximate inference and learning of state space models with Laplace noise
,”
IEEE Trans. Signal Process.
69
,
3176
3189
(
2021
).
28.
D.
Wang
,
D. T.
Ren
,
K.
Li
,
Y. M.
Feng
,
D.
Ma
,
X. G.
Yan
, and
G.
Wang
, “
Epileptic seizure detection in long-term EEG recordings by using wavelet-based directed transfer function
,”
IEEE Trans. Biomed. Eng.
65
,
2591
2599
(
2018
).
29.
F.
Goetze
and
P. Y.
Lai
, “
Reconstructing positive and negative couplings in Ising spin networks by sorted local transfer entropy
,”
Phys. Rev. E
100
,
012121
(
2019
).
30.
R.
Malladi
,
D. H.
Johnson
,
G. P.
Kalamangalam
,
N.
Tandon
, and
B.
Aazhang
, “
Mutual information in frequency and its application to measure cross-frequency coupling in epilepsy
,”
IEEE Trans. Signal Process.
66
,
3008
3023
(
2018
).
31.
D.
Wen
,
P. L.
Jia
,
S. H.
Hsu
,
Y. H.
Zhou
,
X. F.
Lan
,
D.
Cui
,
G. L.
Li
,
S. M.
Yin
, and
L.
Wang
, “
Estimating coupling strength between multivariate neural series with multivariate permutation conditional mutual information
,”
Neural Netw.
110
,
159
169
(
2019
).
32.
J. F.
Fan
,
J.
Meng
,
J.
Ludescher
,
X. S.
Chen
,
Y.
Ashkenazy
,
J.
Kurths
,
S.
Havlin
, and
H. J.
Schellnhuber
, “
Statistical physics approaches to the complex earth system
,”
Phys. Rep.
896
,
1
84
(
2021
).
33.
Y.
Zou
,
R. V.
Donner
,
N.
Marwan
,
J. F.
Donges
, and
J.
Kurths
, “
Complex network approaches to nonlinear time series analysis
,”
Phys. Rep.
787
,
1
97
(
2019
).
34.
T.
Kobayashi
,
S.
Murayama
,
T.
Hachijo
, and
H.
Gotoda
, “
Early detection of thermoacoustic combustion instability using a methodology combining complex networks and machine learning
,”
Phys. Rev. Appl.
11
,
064034
(
2019
).
35.
C.
Tan
,
W. L.
Liu
, and
F.
Dong
, “
Characterizing the correlations between local phase fractions of gas–liquid two-phase flow with wire-mesh sensor
,”
Philos. Trans. R. Soc. A
374
,
20150335
(
2016
).
36.
C.
Ma
,
Q. R.
Yang
,
X. Q.
Wu
, and
J. A.
Lu
, “
Cluster synchronization: From single-layer to multi-layer networks
,”
Chaos
29
,
123120
(
2019
).
37.
K. W.
Li
,
M. X.
Yu
,
L.
Liu
,
J. N.
Zhai
, and
W. Y.
Liu
, “
A novel reliability analysis approach for component-based software based on the complex network theory
,”
Soft. Test. Verif. Rel.
28
,
e1674
(
2018
).
38.
O.
Cats
,
G. J.
Koppenol
, and
M.
Warnier
, “
Robustness assessment of link capacity reduction for complex networks: Application for public transport systems
,”
Reliab. Eng. Syst. Safe.
167
,
544
553
(
2017
).
39.
S.
Scarsoglio
,
F.
Cazzato
, and
L.
Ridolfi
, “
From time-series to complex networks: Application to the cerebrovascular flow patterns in atrial fibrillation
,”
Chaos
27
,
093107
(
2017
).
40.
B.
Zarei
,
M. R.
Meybodi
, and
B.
Masoumi
, “
Chaotic memetic algorithm and its application for detecting community structure in complex networks
,”
Chaos
30
,
013125
(
2020
).
41.
J. F.
Donges
,
H. C. H.
Schultz
,
N.
Marwan
,
Y.
Zou
, and
J.
Kurths
, “
Investigating the topology of interacting networks
,”
Eur. Phys. J. B
84
,
635
651
(
2011
).
42.
Z. K.
Gao
,
M. X.
Liu
,
W. D.
Dang
,
C.
Ma
,
L. H.
Hou
, and
X. L.
Hong
, “
Multilayer limited penetrable visibility graph for characterizing the gas-liquid flow behavior
,”
Chem. Eng. J.
407
,
127229
(
2021
).
43.
M.
Small
, “Complex networks from time series: Capturing dynamics,” in 2013 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2013), pp. 2509–2512.
44.
M.
Huang
,
Z. K.
Sun
,
R. V.
Donner
,
J.
Zhang
,
S. G.
Guan
, and
Y.
Zou
, “
Characterizing dynamical transitions by statistical complexity measures based on ordinal pattern transition networks
,”
Chaos
31
,
033127
(
2021
).
45.
C. W.
Kulp
,
J. M.
Chobot
,
H. R.
Freitas
, and
G. D.
Sprechini
, “
Using ordinal partition transition networks to analyze ECG data
,”
Chaos
26
,
073114
(
2016
).
46.
Y. J.
Ruan
,
R. V.
Donner
,
S. G.
Guan
, and
Y.
Zou
, “
Ordinal partition transition network based complexity measures for inferring coupling direction and delay from time series
,”
Chaos
29
,
043111
(
2019
).
47.
W.
Kobayashi
,
H.
Gotoda
,
S.
Kandani
,
Y.
Ohmichi
, and
S.
Matsuyama
, “
Spatiotemporal dynamics of turbulent coaxial jet analyzed by symbolic information-theory quantifiers and complex-network approach
,”
Chaos
29
,
123110
(
2019
).
48.
Y.
Nomi
,
H.
Gotoda
,
S.
Fukuda
, and
C.
Almarcha
, “
Complex network analysis of spatiotemporal dynamics of premixed flame in a Hele–Shaw cell: A transition from chaos to stochastic state
,”
Chaos
31
,
123133
(
2021
).
49.
Y.
Nomi
,
H.
Gotoda
,
S.
Kandani
, and
C.
Almarcha
, “
Complex network analysis of the gravity effect on premixed flames propagating in a Hele-Shaw cell
,”
Phys. Rev. E
103
,
022218
(
2021
).
50.
Z. K.
Gao
,
Y. X.
Yang
,
L. S.
Zhai
,
N. D.
Jin
, and
G. R.
Chen
, “
A four-sector conductance method for measuring and characterizing low-velocity oil–water two-phase flows
,”
IEEE Trans. Instrum. Meas.
65
,
1690
1697
(
2016
).
51.
F.
Takens
, “Detecting strange attractors in turbulence,” in Dynamical systems and turbulence, Warwick 1980 (Springer, 1981), pp. 366–381.
52.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
,
174102
(
2002
).
53.
M. B.
Kennel
,
R.
Brown
, and
H. D. I.
Abarbanel
, “
Determining embedding dimension for phase-space reconstruction using a geometrical construction
,”
Phys. Rev. A
45
,
3403
(
1992
).
54.
H. S.
Kim
,
R.
Eykholt
, and
J. D.
Salas
, “
Nonlinear dynamics, delay times, and embedding windows
,”
Physica D
127
,
48
60
(
1999
).
55.
G. F.
Hewitt
,
Measurement of Two Phase Flow Parameters
(Academic, New York,
1978
).
56.
Z. K.
Gao
and
N. D.
Jin
, “
Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks
,”
Phys. Rev. E
79
,
066303
(
2009
).
You do not currently have access to this content.