Properties of stochastic systems are defined by the noise type and deterministic forces acting on the system. In out-of-equilibrium setups, e.g., for motions under action of Lévy noises, the existence of the stationary state is not only determined by the potential but also by the noise. Potential wells need to be steeper than parabolic in order to assure the existence of stationary states. The existence of stationary states, in sub-harmonic potential wells, can be restored by stochastic resetting, which is the protocol of starting over at random times. Herein, we demonstrate that the combined action of Lévy noise and Poissonian stochastic resetting can result in the phase transition between non-equilibrium stationary states of various multimodality in the overdamped system in super-harmonic potentials. Fine-tuned resetting rates can increase the modality of stationary states, while for high resetting rates, the multimodality is destroyed as the stochastic resetting limits the spread of particles.

1.
H.
Risken
,
The Fokker-Planck Equation. Methods of Solution and Application
(
Springer-Verlag
,
Berlin
,
1996
).
2.
M.
Magdziarz
and
A.
Weron
, “
Numerical approach to the fractional Klein-Kramers equation
,”
Phys. Rev. E
76
,
066708
(
2007
).
3.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences
(
Springer-Verlag
,
Berlin
,
2009
).
4.
A. V.
Chechkin
,
J.
Klafter
,
V. Y.
Gonchar
,
R.
Metzler
, and
L. V.
Tanatarov
, “
Stationary states of non-linear oscillators driven by Lévy noise
,”
Chem. Phys.
284
,
233
251
(
2002
).
5.
A.
Dubkov
and
B.
Spagnolo
, “
Langevin approach to Lévy flights in fixed potentials: Exact results for stationary probability distributions
,”
Acta Phys. Pol. B
38
,
1745
1758
(
2007
), available at https://www.actaphys.uj.edu.pl/R/38/5/1745/pdf.
6.
S.
Jespersen
,
R.
Metzler
, and
H. C.
Fogedby
, “
Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions
,”
Phys. Rev. E
59
,
2736
(
1999
).
7.
A. V.
Chechkin
,
J.
Klafter
,
V. Y.
Gonchar
,
R.
Metzler
, and
L. V.
Tanatarov
, “
Bifurcation, bimodality, and finite variance in confined Lévy flights
,”
Phys. Rev. E
67
,
010102
(
2003
).
8.
A. V.
Chechkin
,
V. Y.
Gonchar
,
J.
Klafter
,
R.
Metzler
, and
L. V.
Tanatarov
, “
Lévy flights in a steep potential well
,”
J. Stat. Phys.
115
,
1505
1535
(
2004
).
9.
B.
Dybiec
,
I. M.
Sokolov
, and
A. V.
Chechkin
, “
Stationary states in a single-well potentials under Lévy noises
,”
J. Stat. Mech.
2010
, P07008.
10.
I.
Eliazar
and
J.
Klafter
, “
Lévy-driven Langevin systems: Target stochasticity
,”
J. Stat. Phys.
111
,
739
768
(
2003
).
11.
K.
Capała
,
B.
Dybiec
, and
E.
Gudowska-Nowak
, “
Nonlinear friction in underdamped anharmonic stochastic oscillators
,”
Chaos
30
,
073140
(
2020
).
12.
M. R.
Evans
and
S. N.
Majumdar
, “
Diffusion with stochastic resetting
,”
Phys. Rev. Lett.
106
,
160601
(
2011
).
13.
M. R.
Evans
,
S. N.
Majumdar
, and
G.
Schehr
, “
Stochastic resetting and applications
,”
J. Phys. A: Math. Theor.
53
,
193001
(
2020
).
14.
S.
Gupta
and
A. M.
Jayannavar
, “
Stochastic resetting: A (very) brief review
,”
Front. Phys.
10
,
789097
(
2022
).
15.
A.
Nagar
and
S.
Gupta
, “
Diffusion with stochastic resetting at power-law times
,”
Phys. Rev. E
93
,
060102
(
2016
).
16.
A.
Stanislavsky
and
A.
Weron
, “
Optimal non-Gaussian search with stochastic resetting
,”
Phys. Rev. E
104
,
014125
(
2021
).
17.
V.
Méndez
,
A.
Masó-Puigdellosas
,
T.
Sandev
, and
D.
Campos
, “
Continuous time random walks under Markovian resetting
,”
Phys. Rev. E
103
,
022103
(
2021
).
18.
A.
Pal
, “
Diffusion in a potential landscape with stochastic resetting
,”
Phys. Rev. E
91
,
012113
(
2015
).
19.
A.
Pal
and
S.
Reuveni
, “
First passage under restart
,”
Phys. Rev. Lett.
118
,
030603
(
2017
).
20.
M.
Dahlenburg
,
A. V.
Chechkin
,
R.
Schumer
, and
R.
Metzler
, “
Stochastic resetting by a random amplitude
,”
Phys. Rev. E
103
,
052123
(
2021
).
21.
P.
Xu
,
T.
Zhou
,
R.
Metzler
, and
W.
Deng
, “
Stochastic harmonic trapping of a Lévy walk: Transport and first-passage dynamics under soft resetting strategies
,”
New J. Phys.
24
,
033003
(
2022
).
22.
A. M.
Reynolds
and
C. J.
Rhodes
, “
The Lévy flight paradigm: Random search patterns and mechanisms
,”
Ecology
90
,
877
887
(
2009
).
23.
G. M.
Viswanathan
,
M. G.
Da Luz
,
E. P.
Raposo
, and
H. E.
Stanley
,
The Physics of Foraging: An Introduction to Random Searches and Biological Encounters
(
Cambridge University Press
,
Cambridge
,
2011
).
24.
V. V.
Palyulin
,
A. V.
Chechkin
, and
R.
Metzler
, “
Lévy flights do not always optimize random blind search for sparse targets
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
2931
2936
(
2014
).
25.
S.
Redner
,
A Guide to First Passage Time Processes
(
Cambridge University Press
,
Cambridge
,
2001
).
26.
L.
Kusmierz
,
S. N.
Majumdar
,
S.
Sabhapandit
, and
G.
Schehr
, “
First order transition for the optimal search time of Lévy flights with resetting
,”
Phys. Rev. Lett.
113
,
220602
(
2014
).
27.
S.
Reuveni
, “
Optimal stochastic restart renders fluctuations in first passage times universal
,”
Phys. Rev. Lett.
116
,
170601
(
2016
).
28.
M. R.
Evans
and
S. N.
Majumdar
, “
Diffusion with optimal resetting
,”
J. Phys. A: Math. Theor.
44
,
435001
(
2011
).
29.
K.
Capała
and
B.
Dybiec
, “
Multimodal stationary states in symmetric single-well potentials driven by Cauchy noise
,”
J. Stat. Mech.
2019
,
033206
.
30.
C.
Christou
and
A.
Schadschneider
, “
Diffusion with resetting in bounded domains
,”
J. Phys. A: Math. Theor.
48
,
285003
(
2015
).
31.
S.
Eule
and
J. J.
Metzger
, “
Non-equilibrium steady states of stochastic processes with intermittent resetting
,”
New J. Phys.
18
,
033006
(
2016
).
32.
F.
Bardou
,
J. P.
Bouchaud
,
A.
Aspect
, and
C.
Cohen-Tannoudji
,
Lévy Statistics and Laser Cooling
(
Cambridge University Press
,
Cambridge
,
2002
).
33.
J. B.
Bassingthwaighte
,
L. S.
Liebovitch
, and
B. J.
West
,
Fractal Physiology
(
Oxford University Press
,
Oxford
,
1994
).
34.
A. A.
Dubkov
,
B.
Spagnolo
, and
V. V.
Uchaikin
, “
Lévy flight superdiffusion: An introduction
,”
Int. J. Bifurcat. Chaos
18
,
2649
2672
(
2008
).
35.
A.
Janicki
and
A.
Weron
,
Simulation and Chaotic Behavior of α-Stable Stochastic Processes
(
Marcel Dekker
,
New York
,
1994
).
36.
G.
Samorodnitsky
and
M. S.
Taqqu
,
Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance
(
Chapman & Hall
,
New York
,
1994
).
37.
A.
Weron
and
R.
Weron
, “Computer simulation of Lévy stable variables and processes,” in Chaos—The Interplay Between Stochastic and Deterministic Behaviour, Lecture Notes in Physics Vol. 457 (Springer, 1995), pp. 379–392.
38.
D. J.
Higham
, “
An algorithmic introduction to numerical simulation of stochastic differential equations
,”
SIAM Rev.
43
,
525
546
(
2001
).
39.
R.
Mannella
, “
Integration of stochastic differential equations on a computer
,”
Int. J. Mod. Phys. C
13
,
1177
1194
(
2002
).
40.
J. M.
Chambers
,
C. L.
Mallows
, and
B. W.
Stuck
, “
A method for simulating stable random variables
,”
J. Am. Stat. Assoc.
71
,
340
344
(
1976
).
41.
R.
Weron
, “
On the Chambers-Mallows-Stuck method for simulating skewed stable random variables
,”
Stat. Probab. Lett.
28
,
165
171
(
1996
).
42.
A. V.
Chechkin
,
V. Y.
Gonchar
,
J.
Klafter
, and
R.
Metzler
, “Fundamentals of Lévy flight processes,” in Fractals, Diffusion, and Relaxation in Disordered Complex Systems: Advances in Chemical Physics, Part B, edited by W. T. Coffey and Y. P. Kalmykov (John Wiley & Sons, New York, 2006), Vol. 133, pp. 439–496.
43.
A. V.
Chechkin
,
R.
Metzler
,
J.
Klafter
, and
V. Y.
Gonchar
, “Introduction to the theory of Lévy flights,” in Anomalous Transport: Foundations and Applications, edited by R. Klages, G. Radons, and I. M. Sokolov (Wiley-VCH, Weinheim, 2008), pp. 129–162.
44.
A. A.
Kilbas
,
H. M.
Srivastava
, and
J. J.
Trujillo
, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies Vol. 204 (Elsevier Science, Inc., New York, 2006).
45.
I.
Podlubny
,
Fractional Differential Equations
(
Academic Press
,
San Diego, CA
,
1999
).
46.
V. V.
Yanovsky
,
A. V.
Chechkin
,
D.
Schertzer
, and
A. V.
Tur
, “
Lévy anomalous diffusion and fractional Fokker-Planck equation
,”
Physica A
282
,
13
34
(
2000
).
47.
D.
Schertzer
,
M.
Larchevêque
,
J.
Duan
,
V. V.
Yanovsky
, and
S.
Lovejoy
, “
Fractional Fokker-Planck equation for nonlinear stochastic differential equations driven by non-Gaussian Lévy stable noises
,”
J. Math. Phys.
42
,
200
212
(
2001
).
48.
S. G.
Samko
,
A. A.
Kilbas
, and
O. I.
Marichev
,
Fractional Integrals and Derivatives. Theory and Applications
(
Gordon and Breach Science Publishers
,
Yverdon
,
1993
).
49.
A.
Janicki
and
A.
Weron
, “
Can one see α-stable variables and processes
,”
Stat. Sci.
9
,
109
126
(
1994
).
You do not currently have access to this content.