Finite-size effects may significantly influence the collective dynamics of large populations of neurons. Recently, we have shown that in globally coupled networks these effects can be interpreted as additional common noise term, the so-called shot noise, to the macroscopic dynamics unfolding in the thermodynamic limit. Here, we continue to explore the role of the shot noise in the collective dynamics of globally coupled neural networks. Namely, we study the noise-induced switching between different macroscopic regimes. We show that shot noise can turn attractors of the infinitely large network into metastable states whose lifetimes smoothly depend on the system parameters. A surprising effect is that the shot noise modifies the region where a certain macroscopic regime exists compared to the thermodynamic limit. This may be interpreted as a constructive role of the shot noise since a certain macroscopic state appears in a parameter region where it does not exist in an infinite network.

1.
R. E.
Mirollo
and
S. H.
Strogatz
, “
Synchronization of pulse-coupled biological oscillators
,”
SIAM J. Appl. Math.
50
,
1645
1662
(
1990
).
2.
D.
Hansel
and
H.
Sompolinsky
, “
Synchronization and computation in a chaotic neural network
,”
Phys. Rev. Lett.
68
,
718
(
1992
).
3.
R. M.
Smeal
,
G. B.
Ermentrout
, and
J. A.
White
, “
Phase-response curves and synchronized neural networks
,”
Philos. Trans. R. Soc. B
365
,
2407
2422
(
2010
).
4.
C. C.
Canavier
,
S.
Wang
, and
L.
Chandrasekaran
, “
Effect of phase response curve skew on synchronization with and without conduction delays
,”
Front. Neural Circuits
7
,
194
(
2013
).
5.
V.
Klinshov
,
L.
Lücken
, and
S.
Yanchuk
, “
Desynchronization by phase slip patterns in networks of pulse-coupled oscillators with delays: Desynchronization by phase slip patterns
,”
Eur. Phys. J.: Spec. Top.
227
,
1117
1128
(
2018
).
6.
A. V.
Andreev
,
V. A.
Maksimenko
,
A. N.
Pisarchik
, and
A. E.
Hramov
, “
Synchronization of interacted spiking neuronal networks with inhibitory coupling
,”
Chaos, Solitons Fractals
146
,
110812
(
2021
).
7.
L. F.
Abbott
and
C.
van Vreeswijk
, “
Asynchronous states in networks of pulse-coupled oscillators
,”
Phys. Rev. E
48
,
1483
1490
(
1993
).
8.
W.
Gerstner
, “
Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking
,”
Neural Comput.
12
,
43
89
(
2000
).
9.
C.
van Vreeswijk
, “
Partial synchronization in populations of pulse-coupled oscillators
,”
Phys. Rev. E
54
,
5522
5537
(
1996
).
10.
N.
Brunel
and
X. J.
Wang
, “
What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance
,”
J. Neurophysiol.
90
,
415
430
(
2003
).
11.
V. I.
Nekorkin
,
A. S.
Dmitrichev
,
D. V.
Kasatkin
, and
V. S.
Afraimovich
, “
Relating the sequential dynamics of excitatory neural networks to synaptic cellular automata
,”
Chaos
21
,
43124
(
2011
).
12.
C.
van Vreeswijk
and
H.
Sompolinsky
, “
Chaos in neuronal networks with balanced excitatory and inhibitory activity
,”
Science (New York, N.Y.)
274
,
1724
6
(
1996
).
13.
N.
Brunel
, “
Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
,”
J. Comput. Neurosci.
8
,
183
208
(
2000
).
14.
D. S.
Shchapin
and
V. I.
Nekorkin
, “
Parametrically excited chaotic spike sequences and information aspects in an ensemble of Fitzhugh–Nagumo neurons
,”
JETP Lett.
113
,
418
422
(
2021
).
15.
E.
Ullner
and
A.
Politi
, “
Self-sustained irregular activity in an ensemble of neural oscillators
,”
Phys. Rev. X
6
,
011015
(
2016
).
16.
A.
Politi
,
E.
Ullner
, and
A.
Torcini
, “
Collective irregular dynamics in balanced networks of leaky integrate-and-fire neurons
,”
Eur. Phys. J.: Spec. Top.
227
,
1185
1204
(
2018
).
17.
A.
Compte
,
N.
Brunel
,
P. S.
Goldman-Rakic
, and
X. J.
Wang
, “
Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model
,”
Cereb. Cortex
10
,
910
923
(
2000
).
18.
V. V.
Klinshov
and
V. I.
Nekorkin
, “
Working memory in the network of neuron-like units with noise
,”
Int. J. Bifurcation Chaos
18
,
2743
2752
(
2008
).
19.
H. R.
Wilson
and
J. D.
Cowan
, “
Excitatory and inhibitory interactions in localized populations of model neurons
,”
Biophys. J.
12
,
1
24
(
1972
).
20.
S.
ichi Amari
, “
Dynamics of pattern formation in lateral-inhibition type neural fields
,”
Biol. Cybern.
27
,
77
87
(
1977
).
21.
B. H.
Jansen
and
V. G.
Rit
, “
Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns
,”
Biol. Cybern.
73
,
357
366
(
1995
).
22.
J.
Eggert
and
J. L. V.
Hemmen
, “
Modeling neuronal assemblies: Theory and implementation
,”
Neural Comput.
13
,
1923
1974
(
2001
).
23.
W.
Gerstner
and
W. M.
Kistler
,
Spiking Neuron Models: Single Neurons, Populations, Plasticity
(
Cambridge University Press
,
2002
).
24.
A. V.
Chizhov
and
L. J.
Graham
, “
Population model of hippocampal pyramidal neurons, linking a refractory density approach to conductance-based neurons
,”
Phys. Rev. E
75
,
011924
(
2007
).
25.
S. E.
Boustani
and
A.
Destexhe
, “
A master equation formalism for macroscopic modeling of asynchronous irregular activity states
,”
Neural Comput.
21
,
46
100
(
2009
).
26.
M.
di Volo
,
A.
Romagnoni
,
C.
Capone
, and
A.
Destexhe
, “
Biologically realistic mean-field models of conductance-based networks of spiking neurons with adaptation
,”
Neural Comput.
31
,
653
680
(
2019
).
27.
H.
Hasegawa
, “
Generalized rate-code model for neuron ensembles with finite populations
,”
Phys. Rev. E
75
,
051904
(
2007
).
28.
J.
nosuke Teramae
,
Y.
Tsubo
, and
T.
Fukai
, “
Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links
,”
Sci. Rep.
2
,
485
(
2012
).
29.
V.
Klinshov
and
I.
Franović
, “
Mean-field dynamics of a random neural network with noise
,”
Phys. Rev. E
92
,
062813
(
2015
).
30.
I.
Franović
,
O. V.
Maslennikov
,
I.
Bačić
, and
V. I.
Nekorkin
, “
Mean-field dynamics of a population of stochastic map neurons
,”
Phys. Rev. E
96
,
012226
(
2017
).
31.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
,
37113
(
2008
).
32.
E.
Ott
and
T. M.
Antonsen
, “
Long time evolution of phase oscillator systems
,”
Chaos
19
,
23117
(
2009
).
33.
E.
Montbrió
,
D.
Pazó
, and
A.
Roxin
, “
Macroscopic description for networks of spiking neurons
,”
Phys. Rev. X
5
,
021028
(
2015
).
34.
T. B.
Luke
,
E.
Barreto
, and
P.
So
, “
Complete classification of the macroscopic behavior of a heterogeneous network of theta neurons
,”
Neural Comput.
25
,
3207
3234
(
2013
).
35.
C. R.
Laing
, “
Derivation of a neural field model from a network of theta neurons
,”
Phys. Rev. E
90
,
010901
(
2014
).
36.
F.
Devalle
,
A.
Roxin
, and
E.
Montbrió
, “
Firing rate equations require a spike synchrony mechanism to correctly describe fast oscillations in inhibitory networks
,”
PLoS Comput. Biol.
13
,
e1005881
(
2017
).
37.
H.
Bi
,
M.
Segneri
,
M.
di Volo
, and
A.
Torcini
, “
Coexistence of fast and slow gamma oscillations in one population of inhibitory spiking neurons
,”
Phys. Rev. Res.
2
,
13042
(
2020
).
38.
M.
Segneri
,
H.
Bi
,
S.
Olmi
, and
A.
Torcini
, “
Theta-nested gamma oscillations in next generation neural mass models
,”
Front. Comput. Neurosci.
14
,
47
(
2020
).
39.
S.
Keeley
,
Á.
Byrne
,
A.
Fenton
, and
J.
Rinzel
, “
Firing rate models for gamma oscillations
,”
J. Neurophysiol.
121
,
2181
2190
(
2019
).
40.
Á.
Byrne
,
M. J.
Brookes
, and
S.
Coombes
, “
A mean field model for movement induced changes in the beta rhythm
,”
J. Comput. Neurosci.
43
,
143
158
(
2017
).
41.
H.
Schmidt
,
D.
Avitabile
,
E.
Montbrió
, and
A.
Roxin
, “
Network mechanisms underlying the role of oscillations in cognitive tasks
,”
PLoS Comput. Biol.
14
,
e1006430
(
2018
).
42.
H.
Taher
,
A.
Torcini
, and
S.
Olmi
, “
Exact neural mass model for synaptic-based working memory
,”
PLoS Comput. Biol.
16
,
e1008533
(
2020
).
43.
M.
Gerster
,
H.
Taher
,
A.
Škoch
,
J.
Hlinka
,
M.
Guye
,
F.
Bartolomei
,
V.
Jirsa
,
A.
Zakharova
, and
S.
Olmi
, “
Patient-specific network connectivity combined with a next generation neural mass model to test clinical hypothesis of seizure propagation
,”
Front. Syst. Neurosci.
15
,
675272
(
2021
).
44.
Á.
Byrne
,
R. D.
O’Dea
,
M.
Forrester
,
J.
Ross
, and
S.
Coombes
, “
Next-generation neural mass and field modeling
,”
J. Neurophysiol.
123
,
726
742
(
2020
).
45.
V. V.
Klinshov
and
S. Y.
Kirillov
, “
Shot noise in next-generation neural mass models for finite-size networks
,”
Phys. Rev. E
106
,
L062302
(
2022
).
46.
B.
Lindner
,
J.
García-Ojalvo
,
A.
Neiman
, and
L.
Schimansky-Geier
, “
Effects of noise in excitable systems
,”
Phys. Rep.
392
,
321
424
(
2004
).
47.
H. A.
Kramers
, “
Brownian motion in a field of force and the diffusion model of chemical reactions
,”
Physica
7
,
284
304
(
1940
).
48.
L. S.
Tsimring
and
A.
Pikovsky
, “
Noise-induced dynamics in bistable systems with delay
,”
Phys. Rev. Lett.
87
,
250602
(
2001
).
49.
T.
Schwalger
and
B.
Lindner
, “
Higher-order statistics of a bistable system driven by dichotomous colored noise
,”
Phys. Rev. E
78
,
21121
(
2008
).
50.
O.
D’Huys
,
T.
Jüngling
, and
W.
Kinzel
, “
Stochastic switching in delay-coupled oscillators
,”
Phys. Rev. E
90
,
032918
(
2014
).
51.
I.
Franović
and
V.
Klinshov
, “
Slow rate fluctuations in a network of noisy neurons with coupling delay
,”
EPL
116
,
48002
(
2016
).
52.
I.
Franović
and
V.
Klinshov
, “
Clustering promotes switching dynamics in networks of noisy neurons
,”
Chaos
28
,
023111
(
2018
).
53.
V.
Klinshov
,
D.
Shchapin
, and
O.
D’Huys
, “
Mode hopping in oscillating systems with stochastic delays
,”
Phys. Rev. Lett.
125
,
034101
(
2020
).
54.
I.
Franović
,
S.
Yanchuk
,
S.
Eydam
,
I.
Bačić
, and
M.
Wolfrum
, “
Dynamics of a stochastic excitable system with slowly adapting feedback
,”
Chaos
30
,
083109
(
2020
).
55.
E. M.
Izhikevich
,
Dynamical Systems in Neuroscience
(
MIT Press
,
2008
), p.
441
.
56.
D.
Hansel
and
G.
Mato
, “
Asynchronous states and the emergence of synchrony in large networks of interacting excitatory and inhibitory neurons
,”
Neural Comput.
15
,
1
56
(
2003
).
57.
I.
Ratas
and
K.
Pyragas
, “
Macroscopic self-oscillations and aging transition in a network of synaptically coupled quadratic integrate-and-fire neurons
,”
Phys. Rev. E
94
,
032215
(
2016
).
58.
B.
Pietras
, “Pulse shape and voltage-dependent synchronization in spiking neuron networks,” arXiv:2304.09813 (2023).
59.
V. V.
Klinshov
,
V. I.
Nekorkin
, and
J.
Kurths
, “
Stability threshold approach for complex dynamical systems
,”
New J. Phys.
18
,
13004
(
2016
).
60.
V. V.
Klinshov
,
S.
Kirillov
,
J.
Kurths
, and
V. I.
Nekorkin
, “
Interval stability for complex systems
,”
New J. Phys.
20
,
043040
(
2018
).
61.
N. L.
Lundström
, “
How to find simple nonlocal stability and resilience measures
,”
Nonlinear Dyn.
93
,
887
908
(
2018
).
62.
V.
Schmutz
,
W.
Gerstner
, and
T.
Schwalger
, “
Mesoscopic population equations for spiking neural networks with synaptic short-term plasticity
,”
J. Math. Neurosci.
10
,
1
32
(
2020
).
63.
B.
Pietras
,
V.
Schmutz
, and
T.
Schwalger
, “
Mesoscopic description of hippocampal replay and metastability in spiking neural networks with short-term plasticity
,”
PLoS Comput. Biol.
18
,
e1010809
(
2022
).
64.
R. N.
Mantegna
and
B.
Spagnolo
, “
Noise enhanced stability in an unstable system
,”
Phys. Rev. Lett.
76
,
563
566
(
1996
).
65.
A.
Fiasconaro
,
B.
Spagnolo
, and
S.
Boccaletti
, “
Signatures of noise-enhanced stability in metastable states
,”
Phys. Rev. E
72
,
61110
(
2005
).
66.
I.
Bačić
and
I.
Franović
, “
Two paradigmatic scenarios for inverse stochastic resonance
,”
Chaos
30
,
033123
(
2020
).
67.
D. S.
Goldobin
,
M.
di Volo
, and
A.
Torcini
, “
Reduction methodology for fluctuation driven population dynamics
,”
Phys. Rev. Lett.
127
,
038301
(
2021
).
68.
D. S.
Goldobin
,
I. V.
Tyulkina
,
L. S.
Klimenko
, and
A.
Pikovsky
, “
Collective mode reductions for populations of coupled noisy oscillators
,”
Chaos
28
,
101101
(
2018
).
69.
P.
Clusella
and
E.
Montbrió
, “Regular and sparse neuronal synchronization are described by identical mean field dynamics,” arXiv:2208.05515 (2022).
70.
B.
Pietras
,
A.
Pikovsky
et al., “
Exact finite-dimensional description for networks of globally coupled spiking neurons
,”
Phys. Rev. E
107
,
24315
(
2023
).
You do not currently have access to this content.