Detecting overlapping communities is essential for analyzing the structure and function of complex networks. However, most existing approaches only consider network topology and overlook the benefits of attribute information. In this paper, we propose a novel attribute-information non-negative matrix factorization approach that integrates sparse constraints and optimizes an objective function for detecting communities in directed weighted networks. Our algorithm updates the basic non-negative matrix adaptively, incorporating both network topology and attribute information. We also add a sparsity constraint term of graph regularization to maintain the intrinsic geometric structure between nodes. Importantly, we provide strict proof of convergence for the multiplication update rule used in our algorithm. We apply our proposed algorithm to various artificial and real-world networks and show that it is more effective for detecting overlapping communities. Furthermore, our study uncovers the intricate iterative process of system evolution toward convergence and investigates the impact of various variables on network detection. These findings provide insights into building more robust and operable complex systems.

2.
M.
Girvan
and
M. E. J.
Newman
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
7821
(
2002
).
3.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
et al.,
Phys. Rep.
424
,
175
308
(
2006
).
4.
A.
Li
,
R.
Wang
,
L.
Liu
et al.,
IEEE Trans. Industr. Inform.
15
,
366
(
2018
).
5.
G.
Dong
,
J.
Fan
,
L. M.
Shekhtman
et al.,
Proc. Natl. Acad. Sci. U.S.A.
115
,
6911
6915
(
2018
).
6.
M.
Perc
,
J. J.
Jordan
,
D. G.
Rand
et al.,
Phys. Rep.
687
,
1
51
(
2017
).
7.
Y.
Yu
,
G.
Xiao
,
G.
Li
,
W. P.
Tay
, and
H. F.
Teoh
,
Chaos
27
,
103115
(
2017
).
8.
C.
Moore
, arXiv:1702.00467 (2017).
9.
J.
Fan
,
J.
Meng
,
Y.
Ashkenazy
,
S.
Havlin
, and
H. J.
Schellnhuber
,
Proc. Natl. Acad. Sci. U.S.A.
114
,
7543
7548
(
2017
).
10.
S.
Fortunato
and
M.
Barthelemy
, “
Resolution limit in community detection
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
36
(
2007
).
11.
N.
James
and
M.
Menzies
,
Chaos
31
,
083116
(
2021
).
12.
13.
S.
Boccaletti
,
M.
Ivanchenko
,
V.
Latora
et al.,
Phys. Rev. E
75
,
045102
(
2007
).
14.
M.
Jusup
,
P.
Holme
, and
K.
Kanazawa
,
Phys. Rep.
948
,
1
148
(
2022
).
15.
W.
Wang
,
Y.
Feng
,
S.
Chen
,
W.
Xu
,
X.
Zhuo
,
H. J.
Li
, and
M.
Perc
,
New J. Phys.
24
,
053007
(
2022
).
16.
W.
Wang
,
D.
Liu
,
X.
Liu
et al.,
Physica A
392
,
6578
(
2013
).
17.
N.
Gillis
,
J. Mach. Learn. Res.
13
,
3349
3386
(
2012
).
18.
C.
He
,
X.
Fei
,
Q.
Cheng
et al.,
IEEE Trans. Comput. Soc. Syst.
9
,
440
(
2021
).
19.
W.
Wu
,
S.
Kwong
,
Y.
Zhou
et al.,
Inf. Sci.
435
,
263
(
2018
).
20.
R.
Peharz
and
F.
Pernkopf
,
Neurocomputing
80
,
38-46
(
2012
).
21.
M. E. J.
Newman
,
Phys. Rev. E
74
,
036104
(
2006
).
22.
A.
Stanoev
,
D.
Smilkov
, and
L.
Kocarev
,
Phys. Rev. E
84
,
046102
(
2011
).
23.
S.
Zhang
,
R. S.
Wang
, and
X. S.
Zhang
,
Physica A
374
,
483
(
2007
).
24.
L.
Danon
,
A.
Diaz-Guilera
,
J.
Duch
et al.,
J. Stat. Mech. Theory Exp.
2005
,
P09008
(
2005
).
25.
J.
Duch
and
A.
Arenas
,
Phys. Rev. E
72
,
027104
(
2005
).
26.
S.
Huang
,
H.
Wang
,
T.
Li
et al.,
Data Min. Knowl. Discov.
32
,
483
(
2018
).
27.
P. O.
Hoyer
,
J. Mach. Learn. Res.
5
,
1457
(
2004
).
28.
Z.
Xu
,
X.
Chang
,
F.
Xu
et al.,
IEEE Trans. Neural. Netw. Learn. Syst.
23
,
1013
(
2012
).
29.
G.
Gordon
and
R.
Tibshirani
,
Optimization
10
,
725
(
2012
).
30.
R.
Lambiotte
,
J. C.
Delvenne
, and
M.
Barahona
, arXiv:0812.1770 (2008).
31.
A.
Lancichinetti
,
S.
Fortunato
, and
F.
Radicchi
,
Phys. Rev. E
78
,
046110
(
2008
).
32.
A.
Lancichinetti
,
S.
Fortunato
, and
J.
Kertész
,
New J. Phys.
11
,
033015
(
2009
).
33.
L.
Hubert
and
P.
Arabie
,
J. Classif.
2
,
193
(
1985
).
34.
J. M.
Hofman
and
C. H.
Wiggins
,
Phys. Rev. Lett.
100
,
258701
(
2008
).
35.
J.
Xie
and
B. K.
Szymanski
, in 2012 Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) (Springer, Berlin, 2015).
36.
W. W.
Zachary
,
J. Anthropol. Res.
33
,
452
(
1977
).
37.
L. A.
Adamic
and
N.
Glance
, in 2005 International Workshop on Link Discovery (LinkKDD) (Association for Computing Machinery, New York, 2005).
38.
D.
Lusseau
,
Proc. Royal Soc. B
270
,
S186
(
2003
).
39.
M.
Girvan
and
N.
Me
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
7821
(
2002
).
40.
D. J.
Watts
and
S. H.
Strogatz
,
Nature
393
,
440
(
1998
).
41.
D. E.
Knuth
, The Stanford GraphBase: A Platform for Combinatorial Computing (ACM, 1993).
You do not currently have access to this content.