Synchronization among uncoupled oscillators can emerge when common noise is applied on them and is famously known as noise-induced synchronization. In previous studies, it was assumed that common noise may drive all the oscillators at the same time when they are static in space. Understanding how to develop a mathematical model that apply common noise to only a fraction of oscillators is of significant importance for noise-induced synchronization. Here, we propose a direction-dependent noise field model for noise-induced synchronization of an ensemble of mobile oscillators/agents, and the effective noise on each moving agent is a function of its direction of motion. This enables the application of common noise if the agents are oriented in the same direction. We observe not only complete synchronization of all the oscillators but also clustered states as a function of the ensemble density beyond a critical value of noise intensity, which is a characteristic of the internal dynamics of the agents. Our results provide a deeper understanding on noise-induced synchronization even in mobile agents and how the mobility of agents affects the synchronization behaviors.

1.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2001
).
2.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
, “
Synchronization in complex networks
,”
Phys. Rep.
469
,
93
153
(
2008
).
3.
G.
Saxena
,
A.
Prasad
, and
R.
Ramaswamy
, “
Amplitude death: The emergence of stationarity in coupled nonlinear systems
,”
Phys. Rep.
521
,
205
228
(
2012
).
4.
A.
Koseska
,
E.
Volkov
, and
J.
Kurths
, “
Oscillation quenching mechanisms: Amplitude vs. oscillation death
,”
Phys. Rep.
531
,
173
199
(
2013
).
5.
D. M.
Abrams
and
S. H.
Strogatz
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
,
174102
(
2004
).
6.
S.
Majhi
,
B. K.
Bera
,
D.
Ghosh
, and
M.
Perc
, “
Chimera states in neuronal networks: A review
,”
Phys. Life Rev.
28
,
100
121
(
2019
).
7.
F.
Parastesh
,
S.
Jafari
,
H.
Azarnoush
,
Z.
Shahriari
,
Z.
Wang
,
S.
Boccaletti
, and
M.
Perc
, “
Chimeras
,”
Phys. Rep.
898
,
1
114
(
2021
).
8.
A.
Calim
,
J. J.
Torres
,
M.
Ozer
, and
M.
Uzuntarla
, “
Chimera states in hybrid coupled neuron populations
,”
Neural Netw.
126
,
108
117
(
2020
).
9.
A.
Calim
,
P.
Hövel
,
M.
Ozer
, and
M.
Uzuntarla
, “
Chimera states in networks of type-I Morris-Lecar neurons
,”
Phys. Rev. E
98
,
062217
(
2018
).
10.
S. H.
Strogatz
, “
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
,”
Phys. D: Nonlinear Phenom.
143
,
1
20
(
2000
).
11.
S.
Boccaletti
, “
The synchronized dynamics of complex systems
,”
Monogr. Ser. Nonlinear Sci. Complex.
6
,
1
239
(
2008
).
12.
P.
Holme
and
J.
Saramäki
, “
Temporal networks
,”
Phys. Rep.
519
,
97
125
(
2012
).
13.
A.
Buscarino
,
M.
Frasca
,
L. V.
Gambuzza
, and
P.
Hövel
, “
Chimera states in time-varying complex networks
,”
Phys. Rev. E
91
,
022817
(
2015
).
14.
D.
Ghosh
,
M.
Frasca
,
A.
Rizzo
,
S.
Majhi
,
S.
Rakshit
,
K.
Alfaro-Bittner
, and
S.
Boccaletti
, “
The synchronized dynamics of time-varying networks
,”
Phys. Rep.
949
,
1
63
(
2022
).
15.
B.
Kerr
,
M. A.
Riley
,
M. W.
Feldman
, and
B. J.
Bohannan
, “
Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors
,”
Nature
418
,
171
174
(
2002
).
16.
C.
Song
,
Z.
Qu
,
N.
Blumm
, and
A.-L.
Barabási
, “
Limits of predictability in human mobility
,”
Science
327
,
1018
1021
(
2010
).
17.
T.
Gross
,
C. J. D.
D’Lima
, and
B.
Blasius
, “
Epidemic dynamics on an adaptive network
,”
Phys. Rev. Lett.
96
,
208701
(
2006
).
18.
D.
O’Brien
, “
Analysis of the internal arrangement of individuals within crustacean aggregations (Euphausiacea, Mysidacea)
,”
J. Exp. Mar. Biol. Ecol.
128
,
1
30
(
1989
).
19.
M.
Porfiri
,
D. J.
Stilwell
,
E. M.
Bollt
, and
J. D.
Skufca
, “
Random talk: Random walk and synchronizability in a moving neighborhood network
,”
Phys. D: Nonlinear Phenom.
224
,
102
113
(
2006
).
20.
M.
Frasca
,
A.
Buscarino
,
A.
Rizzo
,
L.
Fortuna
, and
S.
Boccaletti
, “
Synchronization of moving chaotic agents
,”
Phys. Rev. Lett.
100
,
044102
(
2008
).
21.
N.
Fujiwara
,
J.
Kurths
, and
A.
Díaz-Guilera
, “
Synchronization in networks of mobile oscillators
,”
Phys. Rev. E
83
,
025101
(
2011
).
22.
S.
Majhi
and
D.
Ghosh
, “
Amplitude death and resurgence of oscillation in networks of mobile oscillators
,”
Europhys. Lett.
118
,
40002
(
2017
).
23.
D. J.
Stilwell
,
E. M.
Bollt
, and
D. G.
Roberson
, “
Sufficient conditions for fast switching synchronization in time-varying network topologies
,”
SIAM J. Appl. Dyn. Syst.
5
,
140
156
(
2006
).
24.
S.
Rakshit
,
B. K.
Bera
,
E. M.
Bollt
, and
D.
Ghosh
, “
Intralayer synchronization in evolving multiplex hypernetworks: Analytical approach
,”
SIAM J. Appl. Dyn. Syst.
19
,
918
963
(
2020
).
25.
X.
Ling
,
W.-B.
Ju
,
N.
Guo
,
C.-Y.
Wu
, and
X.-M.
Xu
, “
Explosive synchronization in network of mobile oscillators
,”
Phys. Lett. A
384
,
126881
(
2020
).
26.
F.
Xiao
,
L.
Xie
, and
B.
Wei
, “
Explosive synchronization of weighted mobile oscillators
,”
Phys. A
596
,
127099
(
2022
).
27.
S.
Majhi
,
D.
Ghosh
, and
J.
Kurths
, “
Emergence of synchronization in multiplex networks of mobile Rössler oscillators
,”
Phys. Rev. E
99
,
012308
(
2019
).
28.
S. N.
Chowdhury
,
S.
Majhi
, and
D.
Ghosh
, “
Distance dependent competitive interactions in a frustrated network of mobile agents
,”
IEEE Trans. Netw. Sci. Eng.
7
,
3159
3170
(
2020
).
29.
V.
Nguefoue
,
T.
Njougouo
,
P.
Louodop
,
H.
Fotsin
, and
H. A.
Cerdeira
, “
Network of mobile systems: Mutual influence of oscillators and agents
,”
Eur. Phys. J. Spec. Top.
231
,
237
245
(
2022
).
30.
T.
Vicsek
,
A.
Czirók
,
E.
Ben-Jacob
,
I.
Cohen
, and
O.
Shochet
, “
Novel type of phase transition in a system of self-driven particles
,”
Phys. Rev. Lett.
75
,
1226
(
1995
).
31.
A.
Buscarino
,
L.
Fortuna
,
M.
Frasca
, and
S.
Frisenna
, “
Interaction between synchronization and motion in a system of mobile agents
,”
Chaos
26
,
116302
(
2016
).
32.
D.
Levis
,
I.
Pagonabarraga
, and
B.
Liebchen
, “
Activity induced synchronization: Mutual flocking and chiral self-sorting
,”
Phys. Rev. Res.
1
,
023026
(
2019
).
33.
K. P.
O’Keeffe
,
H.
Hong
, and
S. H.
Strogatz
, “
Oscillators that sync and swarm
,”
Nat. Commun.
8
,
1504
(
2017
).
34.
G. K.
Sar
,
S. N.
Chowdhury
,
M.
Perc
, and
D.
Ghosh
, “
Swarmalators under competitive time-varying phase interactions
,”
New J. Phys.
24
,
043004
(
2022
).
35.
G. K.
Sar
and
D.
Ghosh
, “
Dynamics of swarmalators: A pedagogical review
,”
Europhys. Lett.
139
,
53001
(
2022
).
36.
G. K.
Sar
,
D.
Ghosh
, and
K.
O’Keeffe
, “
Pinning in a system of swarmalators
,”
Phys. Rev. E
107
,
024215
(
2023
).
37.
C.
Zhou
and
J.
Kurths
, “
Noise-induced phase synchronization and synchronization transitions in chaotic oscillators
,”
Phys. Rev. Lett.
88
,
230602
(
2002
).
38.
R.
Toral
,
C. R.
Mirasso
,
E.
Hernández-Garcıa
, and
O.
Piro
, “
Analytical and numerical studies of noise-induced synchronization of chaotic systems
,”
Chaos
11
,
665
673
(
2001
).
39.
E.
Shajan
,
M. P.
Asir
,
S.
Dixit
,
J.
Kurths
, and
M. D.
Shrimali
, “
Enhanced synchronization due to intermittent noise
,”
New J. Phys.
23
,
112001
(
2021
).
40.
D.
He
,
P.
Shi
, and
L.
Stone
, “
Noise-induced synchronization in realistic models
,”
Phys. Rev. E
67
,
027201
(
2003
).
41.
M.
Uzuntarla
,
J. J.
Torres
,
A.
Calim
, and
E.
Barreto
, “
Synchronization-induced spike termination in networks of bistable neurons
,”
Neural Netw.
110
,
131
140
(
2019
).
42.
S.
Guan
,
Y.-C.
Lai
,
C.-H.
Lai
, and
X.
Gong
, “
Understanding synchronization induced by “common noise”
,”
Phys. Lett. A
353
,
30
33
(
2006
).
43.
F.
Sivrikaya
and
B.
Yener
, “
Time synchronization in sensor networks: A survey
,”
IEEE Netw.
18
,
45
50
(
2004
).
44.
M. L.
Sichitiu
and
C.
Veerarittiphan
, “Simple, accurate time synchronization for wireless sensor networks,” in 2003 IEEE Wireless Communications and Networking, 2003 (WCNC 2003) (IEEE, 2003), Vol. 2, pp. 1266–1273.
45.
A.
Pikovskii
and
M.
Rabinovich
, “
A simple autogenerator with stochastic behaviour
,”
Dokl. Akad. Nauk SSSR
239
,
301–304
(
1978
).
46.
P. J.
Menck
,
J.
Heitzig
,
N.
Marwan
, and
J.
Kurths
, “
How basin stability complements the linear-stability paradigm
,”
Nat. Phys.
9
,
89
92
(
2013
).
47.
C. E.
Shannon
, “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
379
423
(
1948
).
48.
J. L.
Hindmarsh
and
R. M.
Rose
, “
A model of neuronal bursting using three coupled first order differential equations
,”
Proc. R. Soc. Lond. Ser. B.
221
,
87
102
(
1984
).
49.
M. D.
McDonnell
and
L. M.
Ward
, “
The benefits of noise in neural systems: Bridging theory and experiment
,”
Nat. Rev. Neurosci.
12
,
415
425
(
2011
).
50.
A. N.
Pisarchik
and
A. E.
Hramov
, “
Coherence resonance in neural networks: Theory and experiments
,”
Phys. Rep.
1000
,
1
57
(
2023
).
51.
C.-H.
Lai
and
C.
Zhou
, “
Synchronization of chaotic maps by symmetric common noise
,”
Europhys. Lett.
43
,
376
(
1998
).
You do not currently have access to this content.