The airline industry was severely hit by the COVID-19 crisis with an average demand decrease of about 64 % (IATA, April 2020), which triggered already several bankruptcies of airline companies all over the world. While the robustness of the world airline network (WAN) was mostly studied as a homogeneous network, we introduce a new tool for analyzing the impact of a company failure: the “airline company network” where two airlines are connected if they share at least one route segment. Using this tool, we observe that the failure of companies well connected with others has the largest impact on the connectivity of the WAN. We then explore how the global demand reduction affects airlines differently and provide an analysis of different scenarios if it stays low and does not come back to its pre-crisis level. Using traffic data from the Official Aviation Guide and simple assumptions about customer’s airline choice strategies, we find that the local effective demand can be much lower than the average one, especially for companies that are not monopolistic and share their segments with larger companies. Even if the average demand comes back to 60 % of the total capacity, we find that between 46 % and 59 % of the companies could experience a reduction of more than 50 % of their traffic, depending on the type of competitive advantage that drives customer’s airline choice. These results highlight how the complex competitive structure of the WAN weakens its robustness when facing such a large crisis.

1.
M.
Nicola
,
Z.
Alsafi
,
C.
Sohrabi
,
A.
Kerwan
,
A.
Al-Jabir
,
C.
Iosifidis
,
M.
Agha
, and
R.
Agha
, “
The socio-economic implications of the coronavirus pandemic (COVID-19): A review
,”
Int. J. Surg.
78
,
185
(
2020
).
2.
M.
Chinazzi
,
J. T.
Davis
,
M.
Ajelli
,
C.
Gioannini
,
M.
Litvinova
,
S.
Merler
,
A.
Piontti
,
K.
Mu
,
L.
Rossi
,
K.
Sun
,
C.
Viboud
,
X.
Xiong
,
H.
Yu
,
M. E.
Halloran
,
I. M.
Longini
, and
A.
Vespignani
, “
The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak
,”
Science
368
,
395
400
(
2020
).
3.
T.
Suzumura
,
H.
Kanezashi
,
M.
Dholakia
,
E.
Ishii
,
S. A.
Napagao
,
R.
Pérez-Arnal
, and
D.
Garcia-Gasulla
, “The impact of COVID-19 on flight networks,” arXiv:2006.02950 (2020).
4.
M.
Boguna
,
I.
Bonamassa
,
M.
De Domenico
,
S.
Havlin
,
D.
Krioukov
, and
M. Á.
Serrano
, “
Network geometry
,”
Nat. Rev. Phys.
3
,
114
135
(
2021
).
5.
D.
Krioukov
,
F.
Papadopoulos
,
M.
Kitsak
,
A.
Vahdat
, and
M.
Boguná
, “
Hyperbolic geometry of complex networks
,”
Phys. Rev. E
82
,
036106
(
2010
).
6.
T.
Verma
,
F.
Russmann
,
N. A.
Araújo
,
J.
Nagler
, and
H. J.
Herrmann
, “
Emergence of core-peripheries in networks
,”
Nat. Commun.
7
,
10441
(
2016
).
7.
L.
Budd
,
S.
Griggs
,
D.
Howarth
, and
S.
Ison
, “
A fiasco of volcanic proportions? Eyjafjallajökull and the closure of European airspace
,”
Mobilities
6
,
31
40
(
2011
).
8.
P.
Brooker
, “
Fear in a handful of dust: Aviation and the Icelandic volcano
,”
Significance
7
,
112
115
(
2010
).
9.
S. M.
Iacus
,
F.
Natale
,
C.
Santamaria
,
S.
Spyratos
, and
M.
Vespe
, “
Estimating and projecting air passenger traffic during the COVID-19 coronavirus outbreak and its socio-economic impact
,”
Saf. Sci.
129
,
104791
(
2020
).
10.
X.
Sun
,
S.
Wandelt
, and
A.
Zhang
, “
How did COVID-19 impact air transportation? A first peek through the lens of complex networks
,”
J. Air Transp. Manage.
89
,
101928
(
2020
).
11.
R.
Jones
, “UK airlines call for multibillion bailout to survive COVID-19 crisis” (2020).
12.
N.
Adrienne
,
L.
Budd
, and
S.
Ison
, “
Grounded aircraft: An airfield operations perspective of the challenges of resuming flights post COVID
,”
J. Air Transp. Manage.
89
,
101921
(
2020
).
13.
S.
Truxal
, “
State aid and air transport in the shadow of COVID-19
,”
Air Space Law
45
,
61
82
(
2020
).
14.
S.
Hotle
and
S.
Mumbower
, “
The impact of COVID-19 on domestic us air travel operations and commercial airport service
,”
Transp. Res. Interdiscip. Perspect.
9
,
100277
(
2021
).
15.
K.
Linka
,
M.
Peirlinck
,
F.
Sahli Costabal
, and
E.
Kuhl
, “
Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions
,”
Comput. Methods Biomech. Biomed. Eng.
23
,
710
717
(
2020
).
16.
A.
Aleta
,
Q.
Hu
,
J.
Ye
,
P.
Ji
, and
Y.
Moreno
, “
A data-driven assessment of early travel restrictions related to the spreading of the novel COVID-19 within Mainland China
,”
Chaos Soliton. Fract.
139
,
110068
(
2020
).
17.
X.
Bao
,
P.
Ji
,
W.
Lin
,
M.
Perc
, and
J.
Kurths
, “
The impact of COVID-19 on the worldwide air transportation network
,”
R. Soc. Open Sci.
8
,
210682
(
2021
).
18.
S.
Li
,
Y.
Zhou
,
T.
Kundu
, and
J.-B.
Sheu
, “
Spatiotemporal variation of the worldwide air transportation network induced by COVID-19 pandemic in 2020
,”
Transp. Policy
111
,
168
184
(
2021
).
19.
M.-G.
Hâncean
,
M.
Perc
, and
J.
Lerner
, “
Early spread of COVID-19 in Romania: Imported cases from Italy and human-to-human transmission networks
,”
R. Soc. Open Sci.
7
,
200780
(
2020
).
20.
M.-G.
Hâncean
,
J.
Lerner
,
M.
Perc
,
I.
Oană
,
D.-A.
Bunaciu
,
A. A.
Stoica
, and
M.-C.
Ghiţă
, “
Occupations and their impact on the spreading of COVID-19 in urban communities
,”
Sci. Rep.
12
,
1
12
(
2022
).
21.
Q.
Sun
,
Z.
Wang
,
D.
Zhao
,
C.
Xia
, and
M.
Perc
, “
Diffusion of resources and their impact on epidemic spreading in multilayer networks with simplicial complexes
,”
Chaos Soliton. Fract.
164
,
112734
(
2022
).
22.
X.
Bao
,
Q.
Hu
,
P.
Ji
,
W.
Lin
,
J.
Kurths
, and
J.
Nagler
, “
Impact of basic network motifs on the collective response to perturbations
,”
Nat. Commun.
13
,
5301
(
2022
).
23.
P.
Ji
,
W.
Lin
, and
J.
Kurths
, “
Asymptotic scaling describing signal propagation in complex networks
,”
Nat. Phys.
16
,
1082
1083
(
2020
).
24.
S. P.
Ribeiro
,
A. C. E.
Silva
,
W.
Dáttilo
,
A. B.
Reis
,
A.
Góes-Neto
,
L. C. J.
Alcantara
,
M.
Giovanetti
,
W.
Coura-Vital
,
G. W.
Fernandes
, and
V. A. C.
Azevedo
, “
Severe airport sanitarian control could slow down the spreading of COVID-19 pandemics in Brazil
,”
PeerJ
8
,
e9446
(
2020
).
25.
M.
Su
,
B.
Hu
,
Y.
Jiang
,
Z.
Zhang
, and
Z.
Li
, “
Relationship between the Chinese main air transport network and COVID-19 pandemic transmission
,”
Mathematics
10
,
2348
(
2022
).
26.
P.
Christidis
and
A.
Christodoulou
, “
The predictive capacity of air travel patterns during the global spread of the COVID-19 pandemic: Risk, uncertainty and randomness
,”
Int. J. Environ. Res. Public Health
17
,
3356
(
2020
).
27.
S.
Zhao
,
Z.
Zhuang
,
J.
Ran
,
J.
Lin
,
G.
Yang
,
L.
Yang
, and
D.
He
, “
The association between domestic train transportation and novel coronavirus (2019-nCoV) outbreak in China from 2019 to 2020: A data-driven correlational report
,”
Travel Med. Infect. Dis.
33
,
101568
(
2020
).
28.
M.-G.
Hâncean
,
M.
Slavinec
, and
M.
Perc
, “
The impact of human mobility networks on the global spread of COVID-19
,”
J. Complex Networks
8
,
cnaa041
(
2021
).
29.
H.
Nakamura
and
S.
Managi
, “
Airport risk of importation and exportation of the COVID-19 pandemic
,”
Transp. Policy
96
,
40
47
(
2020
).
30.
L.
Zhang
,
H.
Yang
,
K.
Wang
,
Y.
Zhan
, and
L.
Bian
, “
Measuring imported case risk of COVID-19 from inbound international flights—A case study on China
,”
J. Air Transp. Manage.
89
,
101918
(
2020
).
31.
M. U. G.
Kraemer
,
C.-H.
Yang
,
B.
Gutierrez
,
C.-H.
Wu
,
B.
Klein
,
D. M.
Pigott
,
L.
du Plessis
,
N. R.
Faria
,
R.
Li
,
W. P.
Hanage
,
J. S.
Brownstein
,
M.
Layan
,
A.
Vespignani
,
H.
Tian
,
C.
Dye
,
O. G.
Pybus
, and
S. V.
Scarpino
, “
The effect of human mobility and control measures on the COVID-19 epidemic in China
,”
Science
368
,
493
497
(
2020
).
32.
J.
Li
,
C.
Huang
,
Z.
Wang
,
B.
Yuan
, and
F.
Peng
, “
The airline transport regulation and development of public health crisis in megacities of China
,”
J. Transp. Health
19
,
100959
(
2020
).
33.
Y.
Zhou
,
T.
Kundu
,
W.
Qin
,
M.
Goh
, and
J.-B.
Sheu
, “
Vulnerability of the worldwide air transportation network to global catastrophes such as COVID-19
,”
Transp. Res. Part E
154
,
102469
(
2021
).
34.
C.
Musselwhite
,
E.
Avineri
, and
Y.
Susilo
, “
Editorial Jth 16–The coronavirus disease COVID-19 and implications for transport and health
,”
J. Transp. Health
16
,
100853
(
2020
).
35.
M.
Ros
, The 2020 airline bankruptcy list is open.
36.
D.
Slotnik
, “Some of the World’s airlines could go bankrupt because of the COVID-19 crisis, according to an aviation consultancy” (2020).
37.
K.
Ciesluk
, “What causes an airline to go bankrupt?” (2020).
38.
A.
Barrat
,
M.
Barthelemy
,
R.
Pastor-Satorras
, and
A.
Vespignani
, “
The architecture of complex weighted networks
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
3747
3752
(
2004
).
39.
R.
Guimera
,
S.
Mossa
,
A.
Turtschi
, and
L. N.
Amaral
, “
The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
7794
7799
(
2005
).
40.
M.
Zanin
and
F.
Lillo
, “
Modelling the air transport with complex networks: A short review
,”
Eur. Phys. J. Spec. Top.
215
,
5
21
(
2013
).
41.
D. L.
Bryan
and
M. E.
O’kelly
, “
Hub-and-spoke networks in air transportation: An analytical review
,”
J. Reg. Sci.
39
,
275
295
(
1999
).
42.
L.
Dall’Asta
,
A.
Barrat
,
M.
Barthelemy
, and
A.
Vespignani
, “
Vulnerability of weighted networks
,”
J. Stat. Mech.: Theory Exp.
2006
,
P04006
(
2006
).
43.
O.
Lordan
,
J. M.
Sallan
,
P.
Simo
, and
D.
Gonzalez-Prieto
, “
Robustness of the air transport network
,”
Transp. Res. Part E: Logist. Transp. Rev.
68
,
155
163
(
2014
).
44.
T.
Verma
,
N. A.
Araújo
, and
H. J.
Herrmann
, “
Revealing the structure of the world airline network
,”
Sci. Rep.
4
,
1
6
(
2014
).
45.
O.
Lordan
,
J. M.
Sallan
, and
P.
Simo
, “
Study of the topology and robustness of airline route networks from the complex network approach: A survey and research agenda
,”
J. Transp. Geogr.
37
,
112
120
(
2014
).
46.
S.
Boccaletti
,
G.
Bianconi
,
R.
Criado
,
C. I.
Del Genio
,
J.
Gómez-Gardenes
,
M.
Romance
,
I.
Sendina-Nadal
,
Z.
Wang
, and
M.
Zanin
, “
The structure and dynamics of multilayer networks
,”
Phys. Rep.
544
,
1
122
(
2014
).
47.
M.
Kivelä
,
A.
Arenas
,
M.
Barthelemy
,
J. P.
Gleeson
,
Y.
Moreno
, and
M. A.
Porter
, “
Multilayer networks
,”
J. Complex Networks
2
,
203
271
(
2014
).
48.
A.
Cardillo
,
M.
Zanin
,
J.
Gómez-Gardenes
,
M.
Romance
,
A. J. G.
del Amo
, and
S.
Boccaletti
, “
Modeling the multi-layer nature of the European air transport network: Resilience and passengers re-scheduling under random failures
,”
Eur. Phys. J. Spec. Top.
215
,
23
33
(
2013
).
49.
World’s top 100 airlines 2019.
50.
After April passenger demand trough, first signals of uptick.
51.
B. C.
Group
, “The post-COVID-19 flight plan for airlines” (last accessed June 29, 2020).
52.
Solid passenger demand, record load factor in June.

Supplementary Material

You do not currently have access to this content.