Nonlinear dynamical systems describe neural activity at various scales and are frequently used to study brain functions and the impact of external perturbations. Here, we explore methods from optimal control theory (OCT) to study efficient, stimulating “control” signals designed to make the neural activity match desired targets. Efficiency is quantified by a cost functional, which trades control strength against closeness to the target activity. Pontryagin’s principle then enables to compute the cost-minimizing control signal. We then apply OCT to a Wilson–Cowan model of coupled excitatory and inhibitory neural populations. The model exhibits an oscillatory regime, low- and high-activity fixed points, and a bistable regime where low- and high-activity states coexist. We compute an optimal control for a state-switching (bistable regime) and a phase-shifting task (oscillatory regime) and allow for a finite transition period before penalizing the deviation from the target state. For the state-switching task, pulses of limited input strength push the activity minimally into the target basin of attraction. Pulse shapes do not change qualitatively when varying the duration of the transition period. For the phase-shifting task, periodic control signals cover the whole transition period. Amplitudes decrease when transition periods are extended, and their shapes are related to the phase sensitivity profile of the model to pulsed perturbations. Penalizing control strength via the integrated 1-norm yields control inputs targeting only one population for both tasks. Whether control inputs drive the excitatory or inhibitory population depends on the state-space location.

1.
I.
Dasanayake
and
J.-S.
Li
, “
Optimal design of minimum-power stimuli for phase models of neuron oscillators
,”
Phys. Rev. E
83
,
061916
(
2011
).
2.
E.
Casas
,
R.
Herzog
, and
G.
Wachsmuth
, “
Analysis of spatio-temporally sparse optimal control problems of semilinear parabolic equations
,”
ESAIM: COCV
2015
,
263
295
.
3.
O.
Popovych
and
P.
Tass
, “
Adaptive delivery of continuous and delayed feedback deep brain stimulation—A computational study
,”
Sci. Rep.
9
,
10585
(
2019
).
4.
J. H.
Marshel
,
Y. S.
Kim
,
T. A.
Machado
,
S.
Quirin
,
B.
Benson
,
J.
Kadmon
,
C.
Raja
,
A.
Chibukhchyan
,
C.
Ramakrishnan
,
M.
Inoue
,
J. C.
Shane
,
D. J.
McKnight
,
S.
Yoshizawa
,
H. E.
Kato
,
S.
Ganguli
, and
K.
Deisseroth
, “
Cortical layer-specific critical dynamics triggering perception
,”
Science
365
,
eaaw5202
(
2019
).
5.
X.
Chen
,
F.
Wang
,
E.
Fernandez
, and
P. R.
Roelfsema
, “
Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex
,”
Science
370
,
1191
1196
(
2020
).
6.
S. N.
Flesher
,
J. E.
Downey
,
J. M.
Weiss
,
C. L.
Hughes
,
A. J.
Herrera
,
E. C.
Tyler-Kabara
,
M. L.
Boninger
,
J. L.
Collinger
, and
R. A.
Gaunt
, “
A brain-computer interface that evokes tactile sensations improves robotic arm control
,”
Science
372
,
831
836
(
2021
).
7.
L.
Reteig
,
L.
Talsma
,
M.
van Schouwenburg
, and
H.
Slagter
, “
Transcranial electrical stimulation as a tool to enhance attention
,”
J. Cogn. Enhanc.
1
,
10
25
(
2017
).
8.
J.
Au
,
C.
Karsten
,
M.
Buschkuehl
, and
S.
Jaeggi
, “
Optimizing transcranial direct current stimulation protocols to promote long-term learning
,”
J. Cogn. Enhanc.
1
,
65
72
(
2017
).
9.
L.
Colzato
,
M.
Nitsche
, and
A.
Kibele
, “
Noninvasive brain stimulation and neural entrainment enhance athletic performance—A review
,”
J. Cogn. Enhanc.
1
,
73
79
(
2017
).
10.
I.
Telkes
,
J.
Jimenez-Shahed
,
A.
Viswanathan
,
A.
Abosch
, and
N.
Ince
, “
Prediction of STN-DBS electrode implantation track in Parkinson’s disease by using local field potentials
,”
Front. Neurosci.
10
,
198
(
2016
).
11.
S.
Tafazoli
,
C.
MacDowell
,
Z.
Che
,
K.
Letai
,
C.
Steinhardt
, and
T.
Buschman
, “
Learning to control the brain through adaptive closed-loop patterned stimulation
,”
J. Neural Eng.
17
,
056007
(
2020
).
12.
A.
Nabi
,
M.
Mirzadeh
,
F.
Gibou
, and
J.
Moehlis
, “
Minimum energy desynchronizing control for coupled neurons
,”
J. Comput. Neurosci.
34
,
259
271
(
2012
).
13.
I. S.
Dasanayake
and
J.-S.
Li
, “
Design of charge-balanced time-optimal stimuli for spiking neuron oscillators
,”
Neural Comput.
26
,
2223
2246
(
2014
).
14.
K.
Pyragas
,
A. P.
Fedaravičius
,
T.
Pyragienė
, and
P. A.
Tass
, “
Entrainment of a network of interacting neurons with minimum stimulating charge
,”
Phys. Rev. E
102
,
012221
(
2020
).
15.
S. B.
Laughlin
and
T. J.
Sejnowski
, “
Communication in neuronal networks
,”
Science
301
,
1870
1874
(
2003
).
16.
E.
Bullmore
and
O.
Sporns
, “
The economy of brain network organization
,”
Nat. Rev. Neurosci.
13
,
336
349
(
2012
).
17.
S.
Gu
,
F.
Pasqualetti
,
M.
Cieslak
,
Q. K.
Telesford
,
A. B.
Yu
,
A. E.
Kahn
,
J. D.
Medaglia
,
J. M.
Vettel
,
M. B.
Miller
,
S. T.
Grafton
, and
D. S.
Bassett
, “
Controllability of structural brain networks
,”
Nat. Commun.
6
,
8414
(
2015
).
18.
P.
Srivastava
,
E.
Nozari
,
J. Z.
Kim
,
H.
Ju
,
D.
Zhou
,
C.
Becker
,
F.
Pasqualetti
,
G. J.
Pappas
, and
D. S.
Bassett
, “
Models of communication and control for brain networks: Distinctions, convergence, and future outlook
,”
Netw. Neurosci.
4
,
1122
1159
(
2020
).
19.
S. F.
Muldoon
,
F.
Pasqualetti
,
S.
Gu
,
M.
Cieslak
,
S. T.
Grafton
,
J. M.
Vettel
, and
D. S.
Bassett
, “
Stimulation-based control of dynamic brain networks
,”
PLOS Comput. Biol.
12
,
e1005076
(
2016
).
20.
T.
Chouzouris
,
N.
Roth
,
C.
Cakan
, and
K.
Obermayer
, “
Applications of optimal nonlinear control to a whole-brain network of FitzHugh-Nagumo oscillators
,”
Phys. Rev. E
104
,
024213
(
2021
).
21.
C.
Cakan
,
N.
Jajcay
, and
K.
Obermayer
, “
neurolib: A simulation framework for whole-brain neural mass modeling
,”
Cogn. Comput.
(published online,
2021
).
22.
L.
Salfenmoser
and
K.
Obermayer
, “
Nonlinear optimal control of a mean-field model of neural population dynamics
,”
Front. Comput. Neurosci.
16
,
931121
(
2022
).
23.
H. R.
Wilson
and
J. D.
Cowan
, “
Excitatory and inhibitory interactions in localized populations of model neurons
,”
Biophys. J.
12
(
1
),
1
24
(
1972
).
24.
H. R.
Wilson
and
J. D.
Cowan
, “
A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue
,”
Kybernetik
13
,
55
80
(
1973
).
25.
C.
Cakan
,
C.
Dimulescu
,
L.
Khakimova
,
D.
Obst
,
A.
Flöel
, and
K.
Obermayer
, “
Spatiotemporal patterns of adaptation-induced slow oscillations in a whole-brain model of slow-wave sleep
,”
Front. Comput. Neurosci.
15
,
800101
(
2022
).
26.
C.
Cakan
and
K.
Obermayer
, “
Biophysically grounded mean-field models of neural populations under electrical stimulation
,”
PLOS Comput. Biol.
16
,
e1007822
(
2020
).
27.
L.
Papadopoulos
,
C. W.
Lynn
,
D.
Battaglia
, and
D. S.
Bassett
, “
Relations between large-scale brain connectivity and effects of regional stimulation depend on collective dynamical state
,”
PLOS Comput. Biol.
16
,
e1008144
(
2020
).
28.
D.
Kirk
, “Optimal control theory: An introduction,” in Dover Books on Electrical Engineering (Dover Publications, 2012).
29.
K.
Pyragas
,
A. P.
Fedaravičius
,
T.
Pyragienė
, and
P. A.
Tass
, “
Optimal waveform for entrainment of a spiking neuron with minimum stimulating charge
,”
Phys. Rev. E
98
,
042216
(
2018
).
30.
P.
Latham
,
B.
Richmond
,
P.
Nelson
, and
S.
Nirenberg
, “
Intrinsic dynamics in neuronal networks. I. Theory
,”
J. Neurophysiol.
83
(
2
),
808
827
(
2000
).
31.
D.
Holcman
and
M.
Tsodyks
, “
The emergence of up and down states in cortical networks
,”
PLOS Comput. Biol.
2
,
e23
(
2006
).
32.
T. A.
Engel
,
N. A.
Steinmetz
,
M. A.
Gieselmann
,
A.
Thiele
,
T.
Moore
, and
K.
Boahen
, “
Selective modulation of cortical state during spatial attention
,”
Science
354
,
1140
1144
(
2016
).
33.
G. T.
Neske
, “
The slow oscillation in cortical and thalamic networks: Mechanisms and functions
,”
Front. Neural Circuits
9
,
88
(
2016
).
34.
S.
Diekelmann
and
J.
Born
, “
The memory function of sleep
,”
Nat. Rev. Neurosci.
11
,
114
126
(
2010
).
35.
J.
Klinzing
,
N.
Niethard
, and
J.
Born
, “
Mechanisms of systems memory consolidation during sleep
,”
Nat. Neurosci.
22
,
1598
1610
(
2019
).
36.
W.
Singer
, “
Neuronal oscillations: Unavoidable and useful?
,”
Eur. J. Neurosci.
48
,
2389
2398
(
2018
).
37.
J.
Keil
and
D.
Senkowski
, “
Neural oscillations orchestrate multisensory processing
,”
Neuroscientist
24
,
609
626
(
2018
).
38.
V.
van Wassenhove
, “
Temporal cognition and neural oscillations
,”
Curr. Opin. Behav. Sci.
8
,
124
130
(
2016
).
39.
A.
Symons
,
W.
El-Deredy
,
M.
Schwartze
, and
S.
Kotz
, “
The functional role of neural oscillations in non-verbal emotional communication
,”
Front. Hum. Neurosci.
10
,
239
(
2016
).
40.
A.-K. R.
Bauer
,
S.
Debener
, and
A. C.
Nobre
, “
Synchronisation of neural oscillations and cross-modal influences
,”
Trends Cogn. Sci.
24
,
481
495
(
2020
).
41.
D.
Wilson
and
J.
Moehlis
, “
Recent advances in the analysis and control of large populations of neural oscillators
,”
Annu. Rev. Control.
54
,
327
351
(
2022
).
42.
E.
Brown
,
J.
Moehlis
, and
P.
Holmes
, “
On the phase reduction and response dynamics of neural oscillator populations
,”
Neural Comput.
16
,
673
715
(
2004
).
43.
G.
Thut
,
P.
Schyns
, and
J.
Gross
, “
Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain
,”
Front. Psychol.
2
,
170
(
2011
).
44.
D.
Chan
,
H.-J.
Suk
,
B.
Jackson
,
N. P.
Milman
,
D.
Stark
,
S. D.
Beach
, and
L.-H.
Tsai
, “
Induction of specific brain oscillations may restore neural circuits and be used for the treatment of Alzheimer’s disease
,”
J. Intern. Med.
290
,
993
1009
(
2021
).
45.
C.
Pasqual
,
A.
Sanchez-Vidal
,
D.
Zúñiga
,
A.
Calafat
,
M.
Canals
,
X.
Durrieu de Madron
,
P.
Puig
,
S.
Heussner
,
A.
Palanques
, and
N.
Delsaut
, “
Settling particle fluxes across the continental margin of the Gulf of Lion: The role of dense shelf water cascading
,”
Biogeosci. Discuss.
6
,
7897
7931
(
2009
).
46.
I.
Alekseichuk
,
Z.
Turi
,
G.
Amador de Lara
,
A.
Antal
, and
W.
Paulus
, “
Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex
,”
Curr. Biol.
26
,
1513
1521
(
2016
).
47.
J.
Ladenbauer
,
L.
Khakimova
,
R.
Malinowski
,
D.
Obst
,
E.
Tönnies
,
D.
Antonenko
,
K.
Obermayer
,
J.
Hanna
, and
A.
Flöel
, “
Towards optimization of oscillatory stimulation during sleep
,”
Neuromodulation
(published online,
2022
).
48.
J.
Misselhorn
,
B. C.
Schwab
,
T. R.
Schneider
, and
A. K.
Engel
, “
Synchronization of sensory gamma oscillations promotes multisensory communication
,”
eNeuro
6
,
1
14
(
2019
).

Supplementary Material

You do not currently have access to this content.