Multiscale stochastic dynamical systems have been widely adopted to a variety of scientific and engineering problems due to their capability of depicting complex phenomena in many real-world applications. This work is devoted to investigating the effective dynamics for slow–fast stochastic dynamical systems. Given observation data on a short-term period satisfying some unknown slow–fast stochastic systems, we propose a novel algorithm, including a neural network called Auto-SDE, to learn an invariant slow manifold. Our approach captures the evolutionary nature of a series of time-dependent autoencoder neural networks with the loss constructed from a discretized stochastic differential equation. Our algorithm is also validated to be accurate, stable, and effective through numerical experiments under various evaluation metrics.

1.
A. C.
Fowler
and
G. C.
Kember
, “
The Lorenz-Krishnamurthy slow manifold
,”
J. Atmos. Sci.
53
,
1433
1437
(
1996
).
2.
D. A.
Goussis
, “
The role of slow system dynamics in predicting the degeneracy of slow invariant manifolds: The case of vdP relaxation-oscillations
,”
Physica D
248
,
16
32
(
2013
).
3.
B. K.
Carpenter
,
G. S.
Ezra
,
S. C.
Farantos
,
Z. C.
Kramer
, and
S.
Wiggins
, “
Empirical classification of trajectory data: An opportunity for the use of machine learning in molecular dynamics
,”
J. Phys. Chem. B
122
(
13
),
3230
3241
(
2018
).
4.
G.
Zhang
,
Y.
Zeng
,
P.
Gordiichuk
, and
M. S.
Strano
, “
Chemical kinetic mechanisms and scaling of two-dimensional polymers via irreversible solution-phase reactions
,”
J. Chem. Phys.
154
(
19
),
194901
(
2021
).
5.
E.
Weinan
,
Principles of Multiscale Modeling
(
Cambridge University Press
,
2011
).
6.
C.
Kuehn
,
Multiple Time Scale Dynamics
(
Springer
,
2015
), Vol. 191.
7.
R. L.
Stratonovich
,
Topics in the Theory of Random Noise
(
CRC Press
,
1967
), Vol. 2.
8.
L.
Arnold
,
Random Dynamical Systems
(
Springer Science & Business Media
,
2013
).
9.
N.
Berglund
and
B.
Gentz
,
Noise-Induced Phenomena in Slow-Fast Dynamical Systems: A Sample-Paths Approach
(
Springer Science & Business Media
,
2006
).
10.
G.
Pavliotis
and
A.
Stuart
,
Multiscale Methods: Averaging and Homogenization
(
Springer Science & Business Media
,
2008
).
11.
J.
Duan
,
An Introduction to Stochastic Dynamics
(
Cambridge University Press
,
2015
), Vol. 51.
12.
D. L.
Donoho
, “High-dimensional data analysis: The curses and blessings of dimensionality,” in AMS Lectures on Math Challenges (AMS, 2000), Vol. 1, p. 32.
13.
B.
Krauskopf
,
H. M.
Osinga
,
E. J.
Doedel
,
M. E.
Henderson
,
J. M.
Guckenheimer
,
A.
Vladimirsky
,
M.
Dellnitz
, and
O.
Junge
, “
A survey of methods for computing (un)stable manifolds of vector fields
,”
Int. J. Bifurcation Chaos
15
,
763
791
(
2005
).
14.
M.
Branicki
and
S.
Wiggins
, “
An adaptive method for computing invariant manifolds in non-autonomous, three-dimensional dynamical systems
,”
Physica D
238
,
1625
1657
(
2009
).
15.
S.
Jain
and
G.
Haller
, “
How to compute invariant manifolds and their reduced dynamics in high-dimensional finite element models
,”
Nonlinear Dyn.
107
(
2
),
1417
1450
(
2022
).
16.
B.
Haasdonk
,
B.
Hamzi
,
G.
Santin
, and
D.
Wittwar
, “
Kernel methods for center manifold approximation and a weak data-based version of the center manifold theorem
,”
Physica D
427
,
133007
(
2021
).
17.
C. W.
Gear
,
T. J.
Kaper
,
I. G.
Kevrekidis
, and
A.
Zagaris
, “
Projecting to a slow manifold: Singularly perturbed systems and legacy codes
,”
SIAM J. Appl. Dyn. Syst.
4
,
711
732
(
2005
).
18.
J.
Duan
,
K.
Lu
, and
B.
Schmalfuss
, “
Invariant manifolds for stochastic partial differential equations
,”
Ann. Probab.
31
,
2109
2135
(
2003
).
19.
B.
Schmalfuß
and
K.
Schneider
, “
Invariant manifolds for random dynamical systems with slow and fast variables
,”
J. Dyn. Differ. Equ.
20
,
133
164
(
2008
).
20.
J.
Ren
,
J.
Duan
, and
C.
Jones
, “
Approximation of random slow manifolds and settling of inertial particles under uncertainty
,”
J. Dyn. Differ. Equ.
27
,
961
979
(
2015
).
21.
H.
Fu
,
X.
Liu
, and
J.
Duan
, “
Slow manifolds for multi-time-scale stochastic evolutionary systems
,”
Commun. Math. Sci.
11
(
1
),
141–162
(
2013
).
22.
R. Z.
Khasminskij
, “
On the principle of averaging the Itov’s stochastic differential equations
,”
Kybernetika
4
(
3
),
260
279
(
1968
); available at https://www.kybernetika.cz/content/1968/3/260.
23.
N.
Namachchivaya
,
R.
Sowers
, and
L.
Vedula
, “
Stochastic averaging on graphs: Noisy Duffing-van der Pol equation
,”
AIP Conf. Proc.
502
,
255
265
(
2000
).
24.
W.
Wang
and
A. J.
Roberts
, “
Slow manifold and averaging for slow–fast stochastic differential system
,”
J. Math. Anal. Appl.
398
,
822
839
(
2013
).
25.
W.
Liu
,
M.
Röckner
,
X.
Sun
, and
Y.
Xie
, “
Averaging principle for slow-fast stochastic differential equations with time dependent locally Lipschitz coefficients
,”
J. Differ. Equ.
268
(
6
),
2910
2948
(
2020
).
26.
C. J.
Dsilva
,
R.
Talmon
,
C. W.
Gear
,
R. R.
Coifman
, and
I. G.
Kevrekidis
, “
Data-driven reduction for a class of multiscale fast-slow stochastic dynamical systems
,”
SIAM J. Appl. Dyn. Syst.
15
,
1327
1351
(
2016
).
27.
F. X.-F.
Ye
,
S.
Yang
, and
M.
Maggioni
, “Nonlinear model reduction for slow-fast stochastic systems near manifolds,” arXiv:2104.02120 (2021).
28.
P. R.
Vlachas
,
G.
Arampatzis
,
C.
Uhler
, and
P.
Koumoutsakos
, “
Multiscale simulations of complex systems by learning their effective dynamics
,”
Nat. Mach. Intell.
4
,
359
366
(
2022
).
29.
V.
Krajňák
,
S.
Naik
, and
S.
Wiggins
, “
Predicting trajectory behaviour via machine-learned invariant manifolds
,”
Chem. Phys. Lett.
789
,
139290
(
2022
).
30.
L.
Manoni
,
C.
Turchetti
, and
L.
Falaschetti
, “
An effective manifold learning approach to parametrize data for generative modeling of biosignals
,”
IEEE Access
8
,
207112
207133
(
2020
).
31.
F.
Lu
,
K. K.
Lin
, and
A. J.
Chorin
, “
Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation
,”
Physica D
340
,
46
57
(
2017
).
32.
A. J.
Linot
and
M. D.
Graham
, “
Deep learning to discover and predict dynamics on an inertial manifold
,”
Phys. Rev. E
101
(
6
),
062209
(
2020
).
33.
W.
Liao
,
M.
Maggioni
, and
S.
Vigogna
, “Multiscale regression on unknown manifolds,” arXiv:2101.05119 (2021).
34.
J. T.
Vogelstein
,
E. W.
Bridgeford
,
M.
Tang
,
D.
Zheng
,
C. B.
Douville
,
R. C.
Burns
, and
M.
Maggioni
, “
Supervised dimensionality reduction for big data
,”
Nat. Commun.
12
,
2872
(
2021
).
35.
A. V.
Bernstein
and
A. P.
Kuleshov
, “
Manifold learning: Generalization ability and tangent proximity
,”
Int. J. Softw. Inf.
7
(
3
),
359
390
(
2013
); available at http://www.ijsi.org/ijsi/article/abstract/i165.
36.
N.
Berglund
and
B.
Gentz
, “
Geometric singular perturbation theory for stochastic differential equations
,”
J. Differ. Equ.
191
,
1
54
(
2003
).
37.
Z.
Schuss
,
Theory and Applications of Stochastic Processes: An Analytical Approach
(
Springer Science & Business Media
,
2009
), Vol. 170.
38.
G. E.
Hinton
and
R.
Salakhutdinov
, “
Reducing the dimensionality of data with neural networks
,”
Science
313
,
504
507
(
2006
).
You do not currently have access to this content.