This paper deals with chaotic advection due to a two-way interaction between flexible elliptical-solids and a laminar lid-driven cavity flow in two dimensions. The present Fluid multiple-flexible-Solid Interaction study involves various number N(= 1–120) of equal-sized neutrally buoyant elliptical-solids (aspect ratio β = 0.5) such that they result in the total volume fraction Φ = 10 % as in our recent study on single solid, done for non-dimensional shear modulus G ∗ = 0.2 and Reynolds number R e = 100. Results are presented first for flow-induced motion and deformation of the solids and later for chaotic advection of the fluid. After the initial transients, the fluid as well as solid motion (and deformation) attain periodicity for smaller N ≤ 10 while they attain aperiodic states for larger N > 10. Adaptive material tracking (AMT) and Finite-Time Lyapunov Exponent (FTLE)-based Lagrangian dynamical analysis revealed that the chaotic advection increases up to N = 6 and decreases at larger N(= 6–10) for the periodic state. Similar analysis for the transient state revealed an asymptotic increase in the chaotic advection with increasing N ≤ 120. These findings are demonstrated with the help of two types of chaos signatures: exponential growth of material blob’s interface and Lagrangian coherent structures, revealed by the AMT and FTLE, respectively. Our work, which is relevant to several applications, presents a novel technique based on the motion of multiple deformable-solids for enhancement of chaotic advection.

1.
H.
Aref
, “
Stirring by chaotic advection
,”
J. Fluid Mech.
143
,
1
21
(
1984
).
2.
J. M.
Ottino
,
The Kinematics of Mixing: Stretching, Chaos, and Transport
(
Cambridge University Press
,
1989
), Vol. 3.
3.
P.
Swanson
and
J.
Ottino
, “
A comparative computational and experimental study of chaotic mixing of viscous fluids
,”
J. Fluid Mech.
213
,
227
249
(
1990
).
4.
W.-L.
Chien
,
H.
Rising
, and
J.
Ottino
, “
Laminar mixing and chaotic mixing in several cavity flows
,”
J. Fluid Mech.
170
,
355
377
(
1986
).
5.
S.
Takasaki
,
K.
Ogawara
, and
S.-I.
Iida
, “
A study on chaotic mixing in 2D cavity flows: Effects of Reynolds number and amplitude of lid velocity
,”
JSME Int. J., Ser. B
37
,
237
241
(
1994
).
6.
P. D.
Anderson
,
O. S.
Galaktionov
,
G. W.
Peters
,
F. N.
Van De Vosse
, and
H. E.
Meijer
, “
Chaotic fluid mixing in non-quasi-static time-periodic cavity flows
,”
Int. J. Heat Fluid Flow
21
,
176
185
(
2000
).
7.
P. G.
Kruijt
,
O. S.
Galaktionov
,
P. D.
Anderson
,
G. W.
Peters
, and
H. E.
Meijer
, “
Analyzing mixing in periodic flows by distribution matrices: Mapping method
,”
AIChE J.
47
,
1005
1015
(
2001
).
8.
S.
Pai
,
P.
Prakash
, and
B.
Patnaik
, “
Numerical simulation of chaotic mixing in lid driven cavity: Effect of passive plug
,”
Eng. Appl. Comput. Fluid Mech.
7
,
406
418
(
2013
).
9.
F.
Romanò
,
T.
Türkbay
, and
H. C.
Kuhlmann
, “
Lagrangian chaos in steady three-dimensional lid-driven cavity flow
,”
Chaos
30
,
073121
(
2020
).
10.
M.
Marić
and
C. W.
Macosko
, “
Improving polymer blend dispersion in mini-mixers
,”
Polym. Eng. Sci.
41
,
118
130
(
2001
).
11.
W. R.
Hwang
,
P. D.
Anderson
, and
M. A.
Hulsen
, “
Chaotic advection in a cavity flow with rigid particles
,”
Phys. Fluids
17
,
043602
(
2005
).
12.
A.
Vikhansky
, “
Chaotic advection of finite-size bodies in a cavity flow
,”
Phys. Fluids
15
,
1830
1836
(
2003
).
13.
M.
Camesasca
,
M.
Kaufman
, and
I.
Manas-Zloczower
, “
Quantifying fluid mixing with the Shannon entropy
,”
Macromol. Theory Simul.
15
,
595
607
(
2006
).
14.
V.
Prasad
,
S. S.
Kulkarni
, and
A.
Sharma
, “
Chaotic advection in a recirculating flow: Effect of a fluid–flexible-solid interaction
,”
Chaos
32
,
043122
(
2022
).
15.
A.
Safdari
and
K. C.
Kim
, “
Lattice Boltzmann simulation of solid particles behavior in a three-dimensional lid-driven cavity flow
,”
Comput. Math. Appl.
68
,
606
621
(
2014
).
16.
C. M.
Pita
and
S. D.
Felicelli
, “
A fluid–structure interaction method for highly deformable solids
,”
Comput. Struct.
88
,
255
262
(
2010
).
17.
L.
Liu
,
H.
Zheng
,
L.
Williams
,
F.
Zhang
,
R.
Wang
,
J.
Hertzberg
, and
R.
Shandas
, “
Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: System characterization and initial experimental results
,”
Phys. Med. Biol.
53
,
1397
(
2008
).
18.
S. C.
Hur
,
N. K.
Henderson-MacLennan
,
E. R.
McCabe
, and
D.
Di Carlo
, “
Deformability-based cell classification and enrichment using inertial microfluidics
,”
Lab Chip
11
,
912
920
(
2011
).
19.
Y. M.
da Silva Veloso
,
M. M.
de Almeida
,
O. L. S.
de Alsina
,
M. L.
Passos
,
A. S.
Mujumdar
, and
M. S.
Leite
, “
Hybrid phenomenological/ANN-PSO modelling of a deformable material in spouted bed drying process
,”
Powder Technol.
366
,
185
196
(
2020
).
20.
G. C.
Lopes
,
X.
Bi
,
N.
Epstein
,
S. A.
Baldwin
, and
J. R.
Grace
, “
Hydrodynamic characteristics of particles with different roughness and deformability in a liquid fluidized bed
,”
Chem. Eng. Sci.
185
,
50
63
(
2018
).
21.
C.
Leong
and
J.
Ottino
, “
Experiments on mixing due to chaotic advection in a cavity
,”
J. Fluid Mech.
209
,
463
499
(
1989
).
22.
J. G.
Franjione
,
C.-W.
Leong
, and
J. M.
Ottino
, “
Symmetries within chaos: A route to effective mixing
,”
Phys. Fluids A: Fluid Dyn.
1
,
1772
1783
(
1989
).
23.
H.
Zhao
,
J. B.
Freund
, and
R. D.
Moser
, “
A fixed-mesh method for incompressible flow–structure systems with finite solid deformations
,”
J. Comput. Phys.
227
,
3114
3140
(
2008
).
24.
K.
Sugiyama
,
S.
Ii
,
S.
Takeuchi
,
S.
Takagi
, and
Y.
Matsumoto
, “
A full Eulerian finite difference approach for solving fluid–structure coupling problems
,”
J. Comput. Phys.
230
,
596
627
(
2011
).
25.
A.
Sharma
,
Introduction to Computational Fluid Dynamics: Development, Application and Analysis
(
John Wiley & Sons
,
2016
).
26.
X.-D.
Liu
,
S.
Osher
, and
T.
Chan
, “
Weighted essentially non-oscillatory schemes
,”
J. Comput. Phys.
115
,
200
212
(
1994
).
27.
V.
Prasad
,
A.
Sharma
, and
S. S.
Kulkarni
, “
Lid-driven cavity flow-induced dynamics of a neutrally buoyant solid: Effect of Reynolds number, flexibility, and size
,”
Phys. Fluids
34
,
073310
(
2022
).
28.
K.
Sugiyama
,
S.
Ii
,
S.
Takeuchi
,
S.
Takagi
, and
Y.
Matsumoto
, “
Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow
,”
Comput. Mech.
46
,
147
157
(
2010
).
29.
J.
Skotheim
and
L.
Mahadevan
, “
Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts
,”
Phys. Fluids
17
,
092101
(
2005
).
30.
R.
Qi
and
S. J.
Xu
, “
Applications of Lagrangian coherent structures to expression of invariant manifolds in astrodynamics
,”
Astrophys. Space Sci.
351
,
125
133
(
2014
).
31.
S. C.
Shadden
,
F.
Lekien
, and
J. E.
Marsden
, “
Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows
,”
Phys. D
212
,
271
304
(
2005
).
You do not currently have access to this content.