We present a numerical method based on random projections with Gaussian kernels and physics-informed neural networks for the numerical solution of initial value problems (IVPs) of nonlinear stiff ordinary differential equations (ODEs) and index-1 differential algebraic equations (DAEs), which may also arise from spatial discretization of partial differential equations (PDEs). The internal weights are fixed to ones while the unknown weights between the hidden and output layer are computed with Newton’s iterations using the Moore–Penrose pseudo-inverse for low to medium scale and sparse QR decomposition with L 2 regularization for medium- to large-scale systems. Building on previous works on random projections, we also prove its approximation accuracy. To deal with stiffness and sharp gradients, we propose an adaptive step-size scheme and address a continuation method for providing good initial guesses for Newton iterations. The “optimal” bounds of the uniform distribution from which the values of the shape parameters of the Gaussian kernels are sampled and the number of basis functions are “parsimoniously” chosen based on bias-variance trade-off decomposition. To assess the performance of the scheme in terms of both numerical approximation accuracy and computational cost, we used eight benchmark problems (three index-1 DAEs problems, and five stiff ODEs problems including the Hindmarsh–Rose neuronal model of chaotic dynamics and the Allen–Cahn phase-field PDE). The efficiency of the scheme was compared against two stiff ODEs/DAEs solvers, namely, ode15s and ode23t solvers of the MATLAB ODE suite as well as against deep learning as implemented in the DeepXDE library for scientific machine learning and physics-informed learning for the solution of the Lotka–Volterra ODEs included in the demos of the library. A software/toolbox in Matlab (that we call RanDiffNet) with demos is also provided.
Skip Nav Destination
Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs
Article navigation
April 2023
Research Article|
April 13 2023
Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs
Gianluca Fabiani
;
Gianluca Fabiani
(Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Writing – original draft, Writing – review & editing)
1
Scuola Superiore Meridionale
, Largo San Marcellino 10, 80138 Napoli (NA), Italy
Search for other works by this author on:
Evangelos Galaris
;
Evangelos Galaris
(Data curation, Formal analysis, Investigation, Software, Validation)
2
Dipartimento di Matematica e Applicazioni “Renato Caccioppoli,” Università degli Studi di Napoli Federico II
, Corso Umberto I 40, 80138 Napoli (NA), Italy
Search for other works by this author on:
Lucia Russo
;
Lucia Russo
(Conceptualization, Formal analysis, Methodology, Supervision, Validation, Writing – original draft, Writing – review & editing)
3
Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche
, Via Guglielmo Marconi 4, 80125 Napoli (NA), Italy
Search for other works by this author on:
Constantinos Siettos
Constantinos Siettos
a)
(Conceptualization, Formal analysis, Methodology, Supervision, Writing – original draft, Writing – review & editing)
2
Dipartimento di Matematica e Applicazioni “Renato Caccioppoli,” Università degli Studi di Napoli Federico II
, Corso Umberto I 40, 80138 Napoli (NA), Italy
a)Author to whom correspondence should be addressed: constantinos.siettos@unina.it
Search for other works by this author on:
a)Author to whom correspondence should be addressed: constantinos.siettos@unina.it
Chaos 33, 043128 (2023)
Article history
Received:
November 23 2022
Accepted:
March 20 2023
Citation
Gianluca Fabiani, Evangelos Galaris, Lucia Russo, Constantinos Siettos; Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos 1 April 2023; 33 (4): 043128. https://doi.org/10.1063/5.0135903
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00