Migration has the potential to induce outbreaks of cooperation, yet little is known about random migration. Does random migration really inhibit cooperation as often as previously thought? Besides, prior literature has often ignored the stickiness of social ties when designing migration protocols and assumed that players always immediately disconnect from their ex-neighbors once they migrate. However, this is not always true. Here, we propose a model where players can still retain some bonds with their ex-partners after they move from one place to another. The results show that maintaining a certain number of social ties, regardless of prosocial, exploitative, or punitive, can nevertheless facilitate cooperation even if migration occurs in a totally random fashion. Notably, it reflects that tie retention can help random migration, previously thought to be harmful to cooperation, restore the ability to spark bursts of cooperation. The maximum number of retained ex-neighbors plays an important role in facilitating cooperation. We analyze the impact of social diversity in terms of the maximum number of retained ex-neighbors and migration probability, and find that the former enhances cooperation while the latter often engenders an optimal dependence between cooperation and migration. Our results instantiate a scenario in which random migration yields the outbreak of cooperation and highlight the importance of social stickiness.

1.
D.
Helbing
and
W.
Yu
,
Proc. Natl. Acad. Sci. USA
106
,
3680
3685
(
2009
).
2.
J. L.
Sachs
,
U. G.
Mueller
,
T. P.
Wilcox
, and
J. J.
Bull
,
Q. Rev. Biol.
79
,
135
160
(
2004
).
3.
L.
Molleman
,
A. E.
Quiñones
, and
F. J.
Weissing
,
Evol. Hum. Behav.
34
,
342
349
(
2013
).
4.
M.
Perc
,
J. J.
Jordan
,
D. G.
Rand
,
Z.
Wang
,
S.
Boccaletti
, and
A.
Szolnoki
,
Phys. Rep.
687
,
1
51
(
2017
).
5.
M. N.
Burton-Chellew
and
S. A.
West
,
Nat. Hum. Behav.
5
,
1330
1338
(
2021
).
6.
M. A.
Nowak
and
K.
Sigmund
,
Nature
364
,
56
58
(
1993
).
7.
G.
Szabó
and
G.
Fáth
,
Phys. Rep.
446
,
97
216
(
2007
).
8.
M. A.
Nowak
,
Science
314
,
1560
1563
(
2006
).
9.
T.
Sasaki
and
S.
Uchida
,
Biol. Lett.
10
,
20130903
(
2014
).
10.
A.
Szolnoki
and
M.
Perc
,
Proc. R. Soc. B
282
,
20151975
(
2015
).
11.
A.
Szolnoki
and
M.
Perc
,
Phys. Rev. X
7
,
041027
(
2017
).
12.
X.
Chen
and
A.
Szolnoki
,
PLoS Comput. Biol.
14
,
e1006347
(
2018
).
13.
M.
Perc
and
A.
Szolnoki
,
BioSystems
99
,
109
125
(
2010
).
14.
F.
Fu
,
C.
Hauert
,
M. A.
Nowak
, and
L.
Wang
,
Phys. Rev. E
78
,
026117
(
2008
).
15.
Z.
Yang
,
C.
Yu
,
J.
Kim
,
Z.
Li
, and
L.
Wang
,
New J. Phys.
21
,
073057
(
2019
).
16.
A.
Li
,
L.
Zhou
,
Q.
Su
,
S. P.
Cornelius
,
Y.
Liu
,
L.
Wang
, and
S. A.
Levin
,
Nat. Commun.
11
,
2259
(
2020
).
17.
J.
Gómez-Gardeñes
,
I.
Reinares
,
A.
Arenas
, and
L. M.
Floía
,
Sci. Rep.
2
,
620
(
2012
).
18.
Z.
Wang
,
L.
Wang
, and
M.
Perc
,
Phys. Rev. E
89
,
052813
(
2014
).
19.
Y.
Zhang
,
F.
Fu
,
X.
Chen
,
G.
Xie
, and
L.
Wang
,
Sci. Rep.
5
,
17446
(
2015
).
20.
C. A.
Aktipis
,
J. Theor. Biol.
231
,
249
260
(
2004
).
21.
M. H.
Vainstein
,
A. T. C.
Silva
, and
J. J.
Arenzon
,
J. Theor. Biol.
244
,
722
728
(
2007
).
22.
C. P.
Roca
and
D.
Helbing
,
Proc. Natl. Acad. Sci. USA
108
,
11370
11374
(
2011
).
23.
H. X.
Yang
,
Z. X.
Wu
, and
B. H.
Wang
,
Phys. Rev. E
81
,
065101(R)
(
2010
).
24.
X.
Chen
,
A.
Szolnoki
, and
M.
Perc
,
Phys. Rev. E
86
,
036101
(
2012
).
25.
T.
Wu
,
F.
Fu
,
Y.
Zhang
, and
L.
Wang
,
Phys. Rev. E
85
,
066104
(
2012
).
26.
L. L.
Jiang
,
W. X.
Wang
,
Y. C.
Lai
, and
B. H.
Wang
,
Phys. Rev. E
81
,
036108
(
2010
).
27.
Z.
Yang
,
T.
Wu
,
Z.
Li
, and
L.
Wang
,
Eur. Phys. J. B
86
,
158
(
2013
).
28.
Z.
Yang
and
Z.
Li
,
Nonlinear Dyn.
108
,
4599
4610
(
2022
).
29.
B.
Sinervo
and
C. M.
Lively
,
Nature
380
,
240
243
(
1996
).
30.
T.
Reichenbach
,
M.
Mobilia
, and
E.
Frey
,
Nature
448
,
1046
1049
(
2007
).
31.
A.
Dobrinevski
,
M.
Alava
,
T.
Reichenbach
, and
E.
Frey
,
Phys. Rev. E
89
,
012721
(
2014
).
32.
J.
Larsen
,
K. W.
Axhausen
, and
J.
Urry
,
Mobilities
1
,
261
283
(
2006
).
33.
R.
Axelrod
and
W. D.
Hamilton
,
Science
211
,
1390
1396
(
1981
).
34.
F.
Fu
,
T.
Wu
, and
L.
Wang
,
Phys. Rev. E
79
,
036101
(
2009
).
35.
W.
Li
,
X.
Zhang
, and
G.
Hu
,
Phys. Rev. E
76
,
045102(R)
(
2007
).
36.
E. A.
Sicardi
,
H.
Fort
,
M. H.
Vainstein
, and
J. J.
Arenzon
,
J. Theor. Biol.
256
,
240
246
(
2009
).
37.
S.
Meloni
,
A.
Buscarino
,
L.
Fortuna
,
M.
Frasca
,
J.
Gómez-Gardeñes
,
V.
Latora
, and
Y.
Moreno
,
Phys. Rev. E
79
,
067101
(
2009
).
38.
G.
Ichinose
,
M.
Saito
, and
S.
Suzuki
,
PLoS One
8
,
e67702
(
2013
).
39.
R.
Cong
,
B.
Wu
,
Y.
Qiu
, and
L.
Wang
,
PLoS One
7
,
e35776
(
2012
).
40.
R.
Cong
,
Q.
Zhao
,
K.
Li
, and
L.
Wang
,
Sci. Rep.
7
,
14015
(
2017
).
You do not currently have access to this content.