We propose a new measure of the complexity of couplings in multivariate time series by combining the techniques of ordinal pattern analysis and topological data analysis. We construct an increasing sequence of simplicial complexes encoding the information about couplings among the components of a given multivariate time series through the intersection of ordinal patterns. The complexity measure is then defined by making use of the persistent homology groups. We validate the complexity measure both theoretically and numerically.

1.
J. M.
Amigó
,
Permutation Complexity in Dynamical Systems
(
Springer-Verlag
,
Berlin
,
2010
).
2.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
,
174102
(
2002
).
3.
M.
Zanin
,
L.
Zunino
,
O.
Rosso
, and
D.
Papo
, “
Permutation entropy and its main biomedical and econophysics applications: A review
,”
Entropy
14
,
1553
1577
(
2012
).
4.
J. M.
Amigó
,
K.
Keller
, and
V. A.
Unakafova
, “
Ordinal symbolic analysis and its application to biomedical recordings
,”
Phil. Trans. R. Soc. A
373
,
20140091
(
2015
).
5.
K.
Keller
,
T.
Mangold
,
I.
Stolz
, and
J.
Werner
, “
Permutation entropy: New ideas and challenges
,”
Entropy
19
,
134
(
2017
).
6.
I.
Leyva
,
J. H.
Martinez
,
C.
Masoller
,
O. A.
Rosso
, and
M.
Zanin
, “
20 years of ordinal patterns: Perspectives and challenges
,”
Europhys. Lett.
138
,
31001
(
2022
).
7.
T. M.
Cover
and
J. A.
Thomas
,
Elements of Information Theory
(
John Wiley & Sons, Inc.
,
1991
).
8.
C.
Bandt
,
G.
Keller
, and
B.
Pompe
, “
Entropy of interval maps via permutations
,”
Nonlinearity
15
,
1595
1602
(
2002
).
9.
J. M.
Amigó
,
M. B.
Kennel
, and
L.
Kocarev
, “
The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems
,”
Physica D
210
,
77
95
(
2005
).
10.
J. M.
Amigó
, “
The equality of Kolmogorov-Sinai entropy and metric permutation entropy generalized
,”
Physica D
241
,
789
793
(
2012
).
11.
K.
Keller
,
A. M.
Unakafov
, and
V. A.
Unakafova
, “
On the relation of KS entropy and permutation entropy
,”
Physica D
241
,
1477
1481
(
2012
).
12.
M.
Staniek
and
K.
Lehnertz
, “
Symbolic transfer entropy
,”
Phys. Rev. Lett.
100
,
158101
(
2008
).
13.
B.
Pompe
and
J.
Runge
, “
Momentary information transfer as a coupling measure of time series
,”
Phys. Rev. E
83
,
051122
(
2011
).
14.
D.
Kugiumtzis
, “
Transfer entropy on rank vectors
,”
J. Nonlin. Sys. Appl.
3
,
73
81
(
2012
).
15.
O. A.
Rosso
,
H. A.
Larrondo
,
M. T.
Martin
,
A.
Plastino
, and
M. A.
Fuentes
, “
Distinguishing noise from chaos
,”
Phys. Rev. Lett.
99
,
154102
(
2007
).
16.
M.
Zanin
and
F.
Olivares
, “
Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series
,”
Commun. Phys.
4
,
190
(
2021
).
17.
Y.
Cao
,
W.-W.
Tung
,
J. B.
Gao
,
V. A.
Protopopescu
, and
L. M.
Hively
, “
Detecting dynamical changes in time series using the permutation entropy
,”
Phys. Rev. E
70
,
046217
(
2004
).
18.
A. M.
Unakafov
and
K.
Keller
, “
Change-point detection using the conditional entropy of ordinal patterns
,”
Entropy
20
,
709
(
2018
).
19.
J. M.
Amigó
,
R.
Monetti
,
T.
Aschenbrenner
, and
W.
Bunk
, “
Transcripts: An algebraic approach to coupled time series
,”
Chaos
22
,
013105
(
2012
).
20.
T.
Haruna
, “
Partially ordered permutation complexity of coupled time series
,”
Physica D
388
,
40
44
(
2019
).
21.
R.
Monetti
,
W.
Bunk
,
T.
Aschenbrenner
, and
F.
Jamitzky
, “
Characterizing synchronization in time series using information measures extracted from symbolic representations
,”
Phys. Rev. E
79
,
046207
(
2009
).
22.
H.
Edelsbrunner
and
J. L.
Harer
,
Computational Topology: An Introduction
(
American Mathematical Society
,
2010
).
23.
G.
Carlsson
,
Topological Data Analysis with Applications
(
Cambridge University Press
,
2021
).
24.
T.
Haruna
and
K.
Nakajima
, “
Permutation complexity via duality between values and orderings
,”
Physica D
240
,
1370
1377
(
2011
).
25.
B. S. W.
Schröder
,
Ordered Sets: An Introduction
(
Springer Science+Business Media
,
New York
,
2003
).
26.
A.
Hatcher
,
Algebraic Topology
(
Cambridge University Press
,
2002
).
27.
N.
Tsukamoto
,
S.
Miyazaki
, and
H.
Fujisaka
, “
Synchronization and intermittency in three-coupled chaotic oscillators
,”
Phys. Rev. E
67
,
016212
(
2003
).
28.
K.
Kaneko
, “
Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements
,”
Phys. D
41
,
137
172
(
1990
).
29.
S. J. M.
Amigó Elizalde
and
M. B.
Kennel
, “
Forbidden patterns and shift systems
,”
J. Comb. Theory Ser. A
115
,
485
504
(
2008
).
30.
S.
Basu
and
L.
Parida
, “
Spectral sequences, exact couples and persistent homology of filtrations
,”
Expo. Math.
35
,
119
132
(
2017
).
You do not currently have access to this content.